首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We study theoretically quantized states of the neutral and positively charged exciton complexes confined within a circular narrow ring in the presence of the magnetic field applied along the symmetry axis. We show that in the structural adiabatic limit, when the width of the pattern of the particles pathways within the ring is much smaller than its radius, the wave equations for both complexes are separable and their exact solutions can be found in a form of the Fourier series of one and two variables, respectively. We present results of calculation of the lower energies of complexes as functions of the ring's radius and the magnetic field strength for different values of the electron-to-hole mass ratio. We found that in the molecular adiabatic limit, when this ratio tends to zero and the model describes the corresponding donor complexes, the physical interpretation of the quantum-size effect and the oscillations of energy levels in threading magnetic field revealed for the excitons spectra becomes more transparent.  相似文献   

2.
A system of an electron with a hydrogenic impurity confined in a two-dimensional anisotropic quantum dot has been investigated. We report a calculation for the binding energy of a donor impurity. The important feature of a donor impurity in a two-dimensional anisotropic quantum dot is obtained via an analysis of the binding energy. The photoionization cross section associated with intersubband transitions has been calculated. The results are presented as a function of the incident photon energy. The results show that the photoionization cross section of a donor impurity in a two-dimensional anisotropic quantum dot is strongly affected by the degree of anisotropy and the size of the quantum dot.  相似文献   

3.
Within the effective-mass approximation, we have investigated the binding energies of donor impurities as a function of the wire dimensions and the photoionization cross-section for a hydrogenic donor impurity placed on the center of the quantum well-wire as a function of the normalized photon energy in the GaAs, Ge and Si quantum wires with infinite barriers. The calculations are performed by the variational method based on a two-parametric trial wave function. The results show that the impurity binding energy and the photoionization cross-section depend strongly on both wire dimensions and material parameters.  相似文献   

4.
The properties of a 2D quantum ring under rotating and external magnetic field effects are investigated. The Landau levels and their inertial effects on them are initially analyzed. Among the results obtained, it is emphasized that the rotation lifted the degeneracy of Landau levels. The second part deals with the electronic confinement in a 2D ring modeled by a hard wall potential. The eigenstates are described by Landau states as long as they are not too close to the ring edges. On the other hand, near the ring edges, the energies increase monotonically. These states are known as edge states. Edge states have a significant role in the physical properties of the ring. Thus, the Fermi energy and magnetization are analyzed. In the specific case of magnetization, two approaches are considered. In the first approach, an analytical result for magnetization is obtained but without considering rotation. Numerical results show the de Haas-Van Alphen (dHvA) oscillations. In the second approach, rotating effects are considered. In addition to the dHvA oscillations, the Aharonov–Bohm-type (AB) oscillations are verified, which are associated with the presence of edge states. The effects of rotation on the results are discussed and it is found that rotation is responsible for inducing AB oscillations.  相似文献   

5.
A system of an electron with a hydrogenic impurity confined in anisotropic quantum dots with ellipsoidal shape has been investigated. The linear and nonlinear optical absorptions as well as refractive index changes associated with intersubband transitions has been calculated. The results are presented as a function of the incident photon energy. The results show that the optical properties of a donor in ellipsoidal quantum dots are strongly affected by the anisotropy degree and the dot size. The dot anisotropy is shown to play a fundamental role in determining the dot properties.  相似文献   

6.
The binding energies of a hydrogenic donor in a GaN/AlGaN quantum dot are calculated in the influence of magnetic field. The calculations are carried out using the single-band effective mass approximation within a variational scheme. The magnetic field induced binding energy and diamagnetic susceptibility of the hydrogenic donor are obtained as a function of dot radius. Calculations have been carried out with and without the Zeeman effect through the energy-dependent effective mass. The diamagnetic shift of the hydrogenic donor is found for different dot radii. Our results show that (i) the binding energy is higher for smaller dot radii and the magnetic field effects are predominant for larger dot sizes, (ii) the binding energy is higher when the Zeeman effect is included for all the magnetic fields, (iii) the diamagnetic susceptibility increases with the magnetic field and is not pronounced for smaller dot radii and (iv) the diamagnetic shift has a good influence of larger dot radii.  相似文献   

7.
We theoretically study the squeezed probe light passing through a double electromagnetically induced transparency (DEIT) system, in which a microwave field and two coupling lights drive a loop transition. It is shown that the output squeezing can be maintained in both two transparency windows of DEIT, and it can also be manipulated by the relative phase of the three driving fields. The influence of the intensity of applied fields and the optical depth of atoms on the squeezing is also investigated. This study offers possibilities to manipulate the squeezing propagation in atomic media by the phase of electromagnetic fields.  相似文献   

8.
We analyze the effect of the magnetic field parallel to the axis and different potential shape on the ground-state binding energy of the off-axis donors in cylindrical nanotubes containing two GaAs/GaAlAs quantum wells (QWs) in a section of the tube layer. We express the wave function as a product of combinations of s and p subband wave functions and an envelope function that depends only on the electron-ion separation. By using the variational principle we derive a differential equation for the envelope function, which we solve numerically. Two peaks in the curves for the dependence of the ground-state binding energies on the donor distance from the axis are presented and it is shown that the increasing the magnetic field increasing the binding energy while the impurity is located in the QW1, whereas the opposite occurs when the impurity is located in the QW2.  相似文献   

9.
We consider the effects of electric and magnetic fields as well as of hydrostatic pressure on the donor binding energy in InAs Pöschl-Teller quantum rings. The ground state energy and the electron wave function are calculated within the effective mass and parabolic band approximations, using the variational method. The binding energy dependencies on the electric field strength and the hydrostatic pressure are reported for different values of quantum ring size and shape, the parameters of the Pöschl-Teller confining potential, and the magnetic field induction. The results show that the binding energy is an increasing or decreasing function of the electric field, depending on the chosen parameters of the confining potential. Also, we have observed that the binding energy is an increasing/decreasing function of hydrostatic pressure/magnetic field induction. Likewise, the impurity binding energy behaves as an increasing/decreasing function of the inner/outer radii of the quantum ring nanostructure.  相似文献   

10.
The nonlinear optical properties of an off-center hydrogenic donor in a two-dimensional quantum dot under applied magnetic field are investigated in detail by using the matrix diagonalization method. Based on the computed energies and wave functions, the linear, third-order and total optical absorption coefficients as well as the refractive index changes have been examined between the ground state (L=0) and the first excited state (L=1). The results show that the ion position, the applied magnetic field, the confinement frequency, and the incident optical intensity have an important influence on the nonlinear optical properties of off-center donors.  相似文献   

11.
A detailed theoretical study of the combined effects of hydrostatic pressure and in-growth direction applied electric field on the binding energy and self-polarization of a donor impurity in a system of GaAs-(Ga,Al)As coupled square quantum wells is presented. The study is performed in the framework of the effective mass and parabolic band approximations and using a variational procedure. The electron effective mass, the dielectric constant, the barrier height, the well sizes, all them varying with the hydrostatic pressure are taken into account within the study. The results obtained show that the impurity binding energy and its self-polarization bear strong dependencies with the hydrostatic pressure, the strength of the applied electric field, the width of the confining potential barriers, and the impurity position.  相似文献   

12.
An investigation of the magnetic moment of an electron gas in a quantum ring of non-zero width is made. Analytic expressions are obtained for the magnetic moment. For the magnetic moment of the system, the dependence on temperature and parameters of the ring are found and investigated in detail. De Haas–van Alphen and Aharonov–Bohm oscillations are investigated.  相似文献   

13.
The energy levels and binding energies of a hydrogenic impurity in GaAs spherical quantum dots with radius R are calculated by the finite difference method. The system is assumed to have an infinite confining potential well with radius R, which can be viewed as a hard wall boundary condition. The parabolicity of the conduction band profile for GaAs material can be viewed as a parabolic potential well. The energy levels and binding energies are depended dramatically on the radius of the quantum dot and the parabolic potential well. The results show that parabolic potential can remarkably alter the energy level ordering and binding energy level ordering of hydrogenic impurity states for the quantum dot with a smaller radius R.  相似文献   

14.
We report on optical spectroscopy of self-assembled InAs quantum dots in a magnetic field. We describe how we measure the emission characteristics of a single quantum dot (QD) in high magnetic fields at low temperature using a miniature, fiber-based confocal microscope. Example results are presented on a QD whose charge can be controlled using a field-effect device. For the uncharged, singly and doubly charged excitons we find a diamagnetism and the spin Zeeman effect. In contrast, for the triply-charged exciton we find a fundamentally different behavior. Anti-crossings in magnetic field imply that confined states of the QD are hybridized with Landau-like levels associated with the two-dimensional continuum.  相似文献   

15.
In this work, we experimentally study the effect of externally applied magnetic field on a ladder type EIT in a vapour cell consisting of 87Rb atoms. The introduction of magnetic field causes the Zeeman splitting of the hyperfine levels of 87Rb atoms and hence the number of available windows of transparency increases. We report the observation of nine such windows. Such multi window EIT systems are capable of storing pulses at the different frequencies, corresponding to these windows hence paving the way for realization of multi frequency quantum memories. Also, the total bandwidth of storage is 218.4 MHz which is two orders of magnitude higher than that typically obtained in single window EIT based storage systems. These systems have tremendous applications in the field of speedy transmission of data over a long distance quantum communication channel.  相似文献   

16.
In this paper, we first obtain an analytic relation for studying the position-dependent effective mass in a GaAs/AlxGa1−xAs cubic quantum dot. Then, the effect of position-dependent effective mass on the intersubband optical absorption coefficient and the refractive index change in the quantum dot are studied. Our numerical calculations are performed using both a constant effective mass and the position-dependent effective mass. We calculate the linear, nonlinear and total intersubband absorption coefficient and refractive index change as a function of the incident optical intensity and structural parameters such as dot length. The results obtained from the present work show that spatially varying electron effective mass plays an important role in the intersubband optical absorption coefficient and refractive index change in a cubic quantum dot.  相似文献   

17.
In this paper, the effect of hydrostatic pressure on the intersubband optical absorption and the refractive index changes in a GaAs/Ga1−xAlxAs ridge quantum wire are studied. We use analytical expressions for the linear and third-order nonlinear intersubband absorption coefficients and refractive index changes obtained by the compact-density matrix formalism. The linear, third-order nonlinear, and total intersubband absorption coefficients and refractive index changes are investigated at different pressures as a function of photon energy with known values of width wire (bb), the incident optical intensity (II), and the angle θθ. According to the results obtained from the present work, we have found that the pressure plays an important role in the intersubband optical absorption coefficients and refractive index changes in a V-groove quantum wire.  相似文献   

18.
A detailed investigation of the lateral electric field effect on single electron states in coupled quantum dot-ring structure has been systematically studied for cases with and without an on-center hydrogenic donor impurity. The single electron energy spectrum has been found using the effective mass approximation and an exact diagonalization technique. The electron ground state's probability density has been examined for different values of the confinement energies and depth of dot confinement relative to the bottom of the quantum ring and barrier thickness. The energy level's dependence on the electric field strength has been studied considering the effects of mentioned parameters of the structure and hydrogenic donor impurity.  相似文献   

19.
E. C. Niculescu 《哲学杂志》2013,93(24):2089-2107
Abstract

The effects of an off-centre donor impurity on the non-linear optical absorption, second and third harmonic generation in a GaAs two-dimensional disc-shaped quantum ring under magnetic field are investigated within the compact density-matrix formalism and the effective mass approximation. The results reveal that: (i) the absorption spectra extend on larger energy intervals at the increment of the magnetic field; (ii) the possibility of generating second harmonic response from the system is demonstrated for an impurity placed on the repulsive part of the confining potential; (iii) both second harmonic and third harmonic coefficients are one order of magnitude larger for an impurity placed on the repulsive part of the potential and are blue-shifted by the increment of the magnetic field regardless the impurity position.  相似文献   

20.
On a basis of extensive analytical and numerical studies we show that a linear-polarized microwave field creates a stationary magnetization in mesoscopic ballistic quantum dots with two-dimensional electron gas being at a thermal equilibrium. The magnetization is proportional to a number of electrons in a dot and to a microwave power. Microwave fields of moderate strength create in a one dot of few micron size a magnetization which is by few orders of magnitude larger than a magnetization produced by persistent currents. The effect is weakly dependent on temperature and can be observed with existing experimental techniques. The parallels between this effect and ratchets in asymmetric nanostructures are also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号