首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The theory of gel point in real polymer solutions is examined with the empirical correlation between the reciprocal of the percolation threshold and the coordination number given by the percolation theory. Applying a larger value of the relative frequency of cyclization, an excellent agreement is obtained between the present theory and the percolation result. This suggest that while the ring distribution on lattices is similar to that in real systems, ring production is more frequent in the lattice model than in real systems. To confirm this conjecture, we derive the ring distribution function of the lattice model as a limiting case of d→∞, and show that the solution is in fact identical to the asymptotic formula of C→∞ in real systems except for the coefficient C, which has a maximum at d = 5, in support of the above conjecture. To examine the validity of the asymptotic solution for the lattice model, we apply it to the critical point problem of the percolation theory, showing that the solution works well in high dimensions greater than six.  相似文献   

2.
Adapting the recent argument of Aizenman, Duminil-Copin and Sidoravicius for the classical Ising model, it is shown here that the magnetization in the transverse-field Ising model vanishes at the critical point. The proof applies to the ground state in dimension d ≥ 2 and to positive-temperature states in dimension d ≥ 3, and relies on graphical representations as well as an infrared bound.  相似文献   

3.
In the simplest case, consider a \({\mathbb{Z}^d}\) -periodic (d ≥ 3) arrangement of balls of radii < 1/2, and select a random direction and point (outside the balls). According to Dettmann’s first conjecture, the probability that the so determined free flight (until the first hitting of a ball) is larger than t >  > 1 is \({\sim\frac{C}{t}}\) , where C is explicitly given by the geometry of the model. In its simplest form, Dettmann’s second conjecture is related to the previous case with tangent balls (of radii 1/2). The conjectures are established in a more general setup: for \({\mathcal{L}}\) -periodic configuration of—possibly intersecting—convex bodies with \({\mathcal{L}}\) being a non-degenerate lattice. These questions are related to Pólya’s visibility problem (Arch Math Phys Ser 2:135–142, 1918), to theories of Bourgain et al. (Commun Math Phys 190:491–508,1998), and of Marklof–Strömbergsson (Ann Math 172:1949–2033,2010). The results also provide the asymptotic covariance of the periodic Lorentz process assuming it has a limit in the super-diffusive scaling, a fact if d = 2 and the horizon is infinite.  相似文献   

4.
We discuss a conjecture of Alley and Alder predicting a relation between the four-point and the two-point velocity autocorrelation functions for fluids and Lorentz models at sufficiently long times. If the conjecture is correct a modified Burnett coefficient can be defined, which has a finite value, contrary to the ordinary Burnett coefficient, which is divergent. The conjecture is tested for four classes of models with different methods: for three-dimensional fluids mode-coupling theory yields a negative result. The conjecture is confirmed for thed-dimensional deterministic Lorentz gas (d 2) and for a class ofd-dimensional stochastic Lorentz models (d 1) by low-density kinetic theory, as well as by rigorous results, available for one dimension. For yet another class of one-dimensional stochastic Lorentz models, which are exactly solvable in one dimension, the result is negative again. All four classes of models show long-time tails in the velocity autocorrelation function and have a finite diffusion coefficient.  相似文献   

5.
We derive bounds on mixing rates in a special case when the probabilistic ensemble of states is under certain restrictions. In this case we can prove the small incremental mixing conjecture with a constant c′ = 1, which is improved over the previous results of which the tightest is c′ = 2. Furthermore, we demonstrate a bound Γ(Ψ, H) ≤ 2∥H∥ log(d) for the small incremental entangling conjecture if d is sufficiently large.  相似文献   

6.
A tight-binding model of a particle on a d-dimensional lattice with n orbitals per lattice site is considered. It is shown that the density of states obeys a scaling relation at the n = ∞ band edges with characteristic dimension d = 4.  相似文献   

7.
Based on a non-rigorous formalism called the “cavity method”, physicists have put forward intriguing predictions on phase transitions in diluted mean-field models, in which the geometry of interactions is induced by a sparse random graph or hypergraph. One example of such a model is the graph coloring problem on the Erd?s–Renyi random graph G(n, d/n), which can be viewed as the zero temperature case of the Potts antiferromagnet. The cavity method predicts that in addition to the k-colorability phase transition studied intensively in combinatorics, there exists a second phase transition called the condensation phase transition (Krzakala et al. in Proc Natl Acad Sci 104:10318–10323, 2007). In fact, there is a conjecture as to the precise location of this phase transition in terms of a certain distributional fixed point problem. In this paper we prove this conjecture for k exceeding a certain constant k0.  相似文献   

8.
We uncover the low-energy spectrum of a t-J model for electrons on a square lattice of spin-1 iron atoms with 3d xz and 3d yz orbital character by applying Schwinger-boson-slave-fermion mean-field theory and by exact diagonalization of one hole roaming over a 4 × 4 × 2 lattice. Hopping matrix elements are set to produce hole bands centered at zero two-dimensional (2D) momentum in the free-electron limit. Holes can propagate coherently in the t-J model below a threshold Hund coupling when long-range antiferromagnetic order across the d + = 3d (x + iy)z and d ? = 3d (x ? iy)z orbitals is established by magnetic frustration that is off-diagonal in the orbital indices. This leads to two hole-pocket Fermi surfaces centered at zero 2D momentum. Proximity to a commensurate spin-density wave (cSDW) that exists above the threshold Hund coupling results in emergent Fermi surface pockets about cSDW momenta at a quantum critical point (QCP). This motivates the introduction of a new Gutzwiller wavefunction for a cSDW metal state. Study of the spin-fluctuation spectrum at cSDW momenta indicates that the dispersion of the nested band of one-particle states that emerges is electron-type. Increasing Hund coupling past the QCP can push the hole-pocket Fermi surfaces centered at zero 2D momentum below the Fermi energy level, in agreement with recent determinations of the electronic structure of mono-layer iron-selenide superconductors.  相似文献   

9.
We consider bond percolation on $\mathbb{Z}^d$ at the critical occupation density p c for d>6 in two different models. The first is the nearest-neighbor model in dimension d?6. The second model is a “spread-out” model having long range parameterized by L in dimension d>6. In the spread-out case, we show that the cluster of the origin conditioned to contain the site x weakly converges to an infinite cluster as |x|→∞ when d>6 and L is sufficiently large. We also give a general criterion for this convergence to hold, which is satisfied in the case d?6 in the nearest-neighbor model by work of Hara.(12) We further give a second construction, by taking p<p c , defining a measure $\mathbb{Q}^p $ and taking its limit as pp ? c . The limiting object is the high-dimensional analogue of Kesten's incipient infinite cluster (IIC) in d=2. We also investigate properties of the IIC such as bounds on the growth rate of the cluster that show its four-dimensional nature. The proofs of both the existence and of the claimed properties of the IIC use the lace expansion. Finally, we give heuristics connecting the incipient infinite cluster to invasion percolation, and use this connection to support the well-known conjecture that for d>6 the probability for invasion percolation to reach a site x is asymptotic to c|x|?(d?4) as |x|→∞.  相似文献   

10.
We overview lattice data on d = 0, 1, 2, 3 dimensional vacuum defects in lattice four-dimensional SU(2) (SU(3)) gluodynamics. In all the cases, defects have a total volume which scales in physical units (with zero fractal dimension). In the case of d = 1, 2, the defects are distinguished by ultraviolet divergent non-Abelian action as well. This sensitivity to the ultraviolet scale allows us to derive strong constraints from the continuum theory on the properties of the defects, which turn out to be satisfied by the lattice data. We discuss a classification scheme of the defects which allows us to (at least) visualize the defect properties in a simple and unified way. A not-yet-checked relation of the defects to the spontaneous chiral symmetry breaking is suggested by the scheme. Finally, we present some arguments that the defects considered could become fundamental variables of a dual formulation of the theory.  相似文献   

11.
For a system near a quantum critical point (QCP), above its lower critical dimension d L , there is in general a critical line of second-order phase transitions that separates the broken symmetry phase at finite temperatures from the disordered phase. The phase transitions along this line are governed by thermal critical exponents that are different from those associated with the quantum critical point. We point out that, if the effective dimension of the QCP, d eff?=?d?+?z (d is the Euclidean dimension of the system and z the dynamic quantum critical exponent) is above its upper critical dimension $d_{_{C}}$ there is an intermingle of classical (thermal) and quantum critical fluctuations near the QCP. This is due to the breakdown of the generalized scaling relation ψ?=?νz between the shift exponent ψ of the critical line and the crossover exponent νz, for $d+z>d_{_{C}}$ by a dangerous irrelevant interaction. This phenomenon has clear experimental consequences, like the suppression of the amplitude of classical critical fluctuations near the line of finite temperature phase transitions as the critical temperature is reduced approaching the QCP.  相似文献   

12.
《Physics letters. A》1987,124(9):480-484
For the ferromagnetic scalar q-state Potts model on a d-dimensional cubic lattice we prove the following results: (1) We derive a correlation inequality and then we prove that the surface tension between two ordered phases exists in dimension d ⩾ 2 whenever q ⩾ 2 and it is discontinuous at the transition point whenever q is large enough. (2) At the limit q↗ ∞ the surface tension between an ordered phase and the disordered one vanishes everywhere except at the transition point.  相似文献   

13.
We present a study, within a mean-field approach, of the kinetics of a mixed ferrimagnetic model on a square lattice in which two interpenetrating square sublattices have spins that can take two values, , alternated with spins that can take the four values, . We use the Glauber-type stochastic dynamics to describe the time evolution of the system with a crystal-field interaction in the presence of a time-dependent oscillating external magnetic field. The nature (continuous and discontinuous) of transition is characterized by studying the thermal behaviors of average order parameters in a period. The dynamic phase transition points are obtained and the phase diagrams are presented in the reduced magnetic field amplitude (h) and reduced temperature (T) plane, and in the reduced temperature and interaction parameter planes, namely in the (h, T) and (d, T) planes, d is the reduced crystal-field interaction. The phase diagrams always exhibit a tricritical point in (h, T) plane, but do not exhibit in the (d, T) plane for low values of h. The dynamic multicritical point or dynamic critical end point exist in the (d, T) plane for low values of h. Moreover, phase diagrams contain paramagnetic (p), ferromagnetic (f), ferrimagnetic (i) phases, two coexistence or mixed phase regions, (f+p) and (i+p), that strongly depend on interaction parameters.  相似文献   

14.
The effects of random distribution of coordination numbers are investigated for the mixed spin-1/2 and spin-2 Blume-Capel model on the Bethe lattice in terms of exact recursion relations. The usual coordination numbers, i.e. q=3,4 and 6, corresponding to the honeycomb, square and simple cubic lattices, respectively, are considered. Two different q values are taken as couples and are varied randomly in terms of a standard-random approach on the shells of the Bethe lattice with some probabilities. It is found that the model gives either first- or second-order phase transitions for appropriate values of probability (p) and single ion anisotropy (d). One or two tricritical points are also observed depending on the given values of p and d, respectively.  相似文献   

15.
We derive a lower bound on the ground state energy of the Hubbard model for given value of the total spin. In combination with the upper bound derived previously by Giuliani (J. Math. Phys. 48:023302, [2007]), our result proves that in the low density limit the leading order correction compared to the ground state energy of a non-interacting lattice Fermi gas is given by 8π a ? u ? d , where ? u(d) denotes the density of the spin-up (down) particles, and a is the scattering length of the contact interaction potential. This result extends previous work on the corresponding continuum model to the lattice case.  相似文献   

16.
17.
We study the two- and three-dimensional, superrenormalizable Edwards model and the self-avoiding walk model of polymers. Using a Schwinger-Dyson equation and upper and lower bounds on correlations in terms of “skeleton diagrams” [6] we establish the existence of a non-trivial continuum limit in the two- and three-dimensional, superrenormalizable Edwards model. We also prove that perturbation theory is asymptotic for the continuum correlations of these models.A fairly detailed analysis of the approach to the critical point in the self-avoiding walk model is presented. In particular, we show that η<1. In dimension d?4, we discuss rigorous consequences of the conjecture that η is non-negative: among other implications, we derive that the continuum limit is trivial and that γ=1, in d?5 dimensions, and that corrections to mean-field scaling laws are at most logarithmic in four dimensions.  相似文献   

18.
We here study directed self-avoiding walks on site diluted square lattice at the percolation threshold by two parameter real space renormalization group method. We found \(v_\parallel ^{p_c } = 1.00\) and \(v_ \bot ^{p_c } = 0.4348\) from cell-to-cell transformation method. This \(v_ \bot ^{p_c } \) value is then compared with the modified Alexander-Orbach formula that \(v_ \bot ^{p_c } = {{d_S } \mathord{\left/ {\vphantom {{d_S } {2d_L }}} \right. \kern-0em} {2d_L }}\) whered s is the fracton dimension andd L is the spreading dimension of the infinite directed percolation cluster.  相似文献   

19.
We use an m-vicinity method to examine Ising models on hypercube lattices of high dimensions d3. This method is applicable for both short-range and long-range interactions. We introduce a small parameter, which determines whether the method can be used when calculating the free energy. When we account for interaction with the nearest neighbors only, the value of this parameter depends on the dimension of the lattice d. We obtain an expression for the critical temperature in terms of the interaction constants that is in a good agreement with the results of computer simulations. For d=5,6,7, our theoretical estimates match the numerical results both qualitatively and quantitatively. For d=3,4, our method is sufficiently accurate for the calculation of the critical temperatures; however, it predicts a finite jump of the heat capacity at the critical point. In the case of the three-dimensional lattice (d=3), this contradicts the commonly accepted ideas of the type of the singularity at the critical point. For the four-dimensional lattice (d=4), the character of the singularity is under current discussion. For the dimensions d=1, 2 the m-vicinity method is not applicable.  相似文献   

20.
We analyze the density of states and some aspects of the replica method for Anderson's tight binding model on a lattice of arbitrary dimension, with diagonal disorder. We give heuristic arguments for the conjectures that the classical value of the exponent of the localization length is 1/2 and that the upper critical dimension,d c loc , is bounded by 4d c loc 6.Work supported in part by NSF Grant No. DMR 8100 417.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号