首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We construct the relativistic particle model without Grassmann variables which meets the following requirements. A) Canonical quantization of the model implies the Dirac equation. B) The variable which experiences Zitterbewegung, represents a gauge non-invariant variable in our model. Hence our particle does not experience the undesirable Zitterbewegung. C) In the non-relativistic limit spin is described by three-vector, as it could be expected.  相似文献   

2.
The two-dimensional Dirac Hamiltonian with equal scalar and vector potentials has been proved commuting with the deformed orbital angular momentum L. When the potential takes the Coulomb form, the system has an SO(3) symmetry, and similarly the harmonic oscillator potential possesses an SU(2) symmetry. The generators of the symmetric groups are derived for these two systems separately. The corresponding energy spectra are yielded naturally from the Casimir operators. Their non-relativistic limits are also discussed.  相似文献   

3.
We have studied the spin dependent force and the associated momentum space Berry curvature in an accelerating system. The results are derived by taking into consideration the non-relativistic limit of a generally covariant Dirac equation with an electromagnetic field present, where the methodology of the Foldy–Wouthuysen transformation is applied to achieve the non-relativistic limit. Spin currents appear due to the combined action of the external electric field, the crystal field and the induced inertial electric field via the total effective spin–orbit interaction. In an accelerating frame, the crucial role of momentum space Berry curvature in the spin dynamics has also been addressed from the perspective of spin Hall conductivity. For time dependent acceleration, the expression for the spin polarization has been derived.  相似文献   

4.
5.
Generalising the linearisation procedure used by Dirac and later by Lévy-Leblond, we derive the first-order non-relativistic wave equations for particles of spin 1 and spin 3/2 starting from the Schrödinger equation. By the introduction in the momentum of a correction linear in coordinates, we establish the wave equation of the radial harmonic oscillator with spin-orbit coupling.  相似文献   

6.
The polarization state of a light beam is related to its spin angular momentum and can be represented on the Poincaré sphere. We propose a sphere for light beams in analogous orbital angular momentum states. Using the Poincaré-sphere equivalent, we interpret the rotational frequency shift for light beams with orbital angular momentum [Phys. Rev. Lett. 80, 3217 (1998)] as a dynamically evolving geometric phase.  相似文献   

7.
V. H. Zaveri 《Pramana》2010,75(4):579-598
The non-linear non-perturbative relativistic atomic theory introduces spin in the dynamics of particle motion. The resulting energy levels of hydrogen atom are exactly the same as that of Dirac theory. The theory accounts for the energy due to spin-orbit interaction and for the additional potential energy due to spin and spin-orbit coupling. Spin angular momentum operator is integrated into the equation of motion. This requires modification to classical Laplacian operator. Consequently, the Dirac matrices and the k operator of Dirac’s theory are dispensed with. The theory points out that the curvature of the orbit draws on certain amount of kinetic and potential energies affecting the momentum of electron and the spin-orbit interaction energy constitutes a part of this energy. The theory is developed for spin-1/2 bound state single electron in Coulomb potential and then extended further to quarkonium physics by introducing the linear confining potential. The unique feature of this quarkonium model is that the radial distance can be exactly determined and does not have a statistical interpretation. The established radial distance is then used to determine the wave function. The observed energy levels are used as the input parameters and the radial distance and the string tension are predicted. This ensures 100% conformance to all observed energy levels for the heavy quarkonium.  相似文献   

8.
The transformation of the angular momentum of an optical eddy in a weakly directing perturbed optical fiber is analyzed within the spin-orbit operator representation. The case of fibers with anisotropy of the core and cladding materials and the case of fibers with an elliptic cross section are considered. The spectrum of polarization corrections to the scalar propagation constant is determined for fibers of two types. For both the strongly anisotropic and elliptic fibers, the spin angular momentum of the linearly polarized LV eddy is suppressed and the orbital angular momentum is characterized by simple oscillations with a beating length dependent only on the spin-orbit parameter of an unperturbed fiber. The orbital and spin angular momenta of the circularly polarized CV eddy in the anisotropic fiber interchange in the elliptic fiber. The orbital angular momentum can be completely restored in the strongly anisotropic fiber, whereas only the spin angular momentum is completely restored in the elliptic fiber.  相似文献   

9.
In the present work, we develop a method to derive the anomalous velocity of a spinning electron. From Dirac equation, the relationships among the expectation values of the Pryce’s mass-center operator, the position operator, the spin operator and the canonical momentum operator are investigated. By requiring that the center of mass for a classical spinning electron is related to the expectation value of Pryce’s mass-center operator, one can obtain a classical expression for the position of the electron. With the classical equations of motion, the anomalous velocity of a spinning electron can be easily obtained. It is shown that two factors contribute to the anomalous velocity: one is dependent on the selection of Pryce’s mass-center operators and the other is a type-independent velocity expressed by the rotational velocity and the Lorentz force.  相似文献   

10.
《Physics letters. A》2005,336(1):66-70
Current-induced spin transfer torque through a marginal Fermi liquid (MFL) which is connected to two noncollinearly aligned ferromagnets via tunnel junctions is discussed in terms of the nonequilibrium Green function method. It is found that in the absence of the spin–flip scattering, the magnitude of the torque increases with the polarization and the coupling constant λ of the MFL, whose maximum increases with λ linearly, showing that the interactions between electrons tend to enhance the spin torque. When the spin–flip scattering is included, an additional spin torque is induced. It is found that the spin–flip scattering enhances the spin torque and gives rise to a nonlinear angular shift.  相似文献   

11.
It is shown that the same kind of deterministic chaos that occurs in classical systems can occur in certain quantum mechanical, many-body systems. The example of the physical realization of the periodically kicked quantum spin (PKQS) is considered in detail. The quantum mechanical equations of motion for this system can be converted into the three-dimensional PKQS map, which exhibits deterministic chaos and Arnold diffusion. Although the case of quantum spin s= 1/2 is assumed, it is shown that the same map results for s=1 (but not for s>/=3/2), and for a suitably chosen classical particle with orbital angular momentum. A simple generalization of the PKQS model gives rise to stochastic webs on the surface of the unit sphere very similar to the Zaslavsky stochastic webs in a plane.  相似文献   

12.
A semiclassical theory of spin dynamics and transport is formulated using the Dirac electron model. This is done by constructing a wavepacket from the positive-energy electron band, and studying its structure and center of mass motion. The wavepacket has a minimal size equal to the Compton wavelength, and has self-rotation about the average spin angular momentum, which gives rise to the spin magnetic moment. Geometric gauge structure in the center of mass motion provides a natural explanation of the spin-orbit coupling and various Yafet terms. Applications of the spin-Hall and spin-Nernst effects are discussed.  相似文献   

13.
相对论性粒子螺旋度守恒与能量-动量张量的对称性无关   总被引:2,自引:1,他引:1  
王锡绂 《大学物理》1999,18(12):25-26
在相对论性量子体系中轨道角动量和自旋不能分别守恒,无论能量-动量张量算符是否对称,守恒的只是总角动量。  相似文献   

14.
A higher-order Poincaré sphere and Stokes parameter representation of the higher-order states of polarization of vector vortex beams that includes radial and azimuthal polarized cylindrical vector beams is presented. The higher-order Poincaré sphere is constructed by naturally extending the Jones vector basis of plane wave polarization in terms of optical spin angular momentum to the total optical angular momentum that includes higher dimensional orbital angular momentum. The salient properties of this representation are illustrated by its ability to describe the higher-order modes of optical fiber waveguides, more exotic vector beams, and a higher-order Pancharatnam-Berry geometric phase.  相似文献   

15.
We propose a new quantum network scheme using orbital angular momentum states of photons to route the network and spin angular momentum states to encode the information. A four-user experimental scheme based on this efficient quantum network is analyzed in detail, which is particularly appealing for the free space quantum key distribution. Users can freely exchange quantum keys with each other.  相似文献   

16.
We investigate the problem about what the spin-magnetic moment is. The magnetic moment of the Dirac electron in the frame along z-axis is evaluated. This is identified with the spin-magnetic moment of the electron, because there is not any z-component of magnetic moment caused by orbital angular momentum in our frame. The correct value of the spin-magnetic moment and the correct ratio of the spin-magnetic moment to the spin (i.e. g=2) are obtained explicitly. In deriving them, the negative energy solutions of the Dirac equation perform essential roles. We find that the transition current from a positive energy state to a negative energy state causes spin-magnetic moment of the electrons in vacuum. This fact implies that the ratio of the spin-magnetic moment to the spin may change depending on the environments. For example, it may have different values in materials.  相似文献   

17.
An introduction is given to the concepts of the spin and orbital angular momentum of light beams. Both spin and orbital angular momentum can be transferred from a light beam to particles held within optical tweezers, so forming an optical spanner. Each also give rise to a frequency shift when the light beam is rotated. This arises because quarter or half-wave plates and /2 or mode converters play equivalent roles for spin and orbital angular momentum respectively.  相似文献   

18.
Wang W  Takeda M 《Optics letters》2007,32(18):2656-2658
In analogy with the separation of the total optical angular momentum into a spin and an orbital part in electrodynamics, we introduce a new concept of spin and orbital angular coherence momenta into the general coherence theory of vector electromagnetic fields. The properties of the newly introduced spin and orbital angular coherence momenta are investigated through the decomposition of the total coherence angular momentum into the sum of these two components, and their separate conservations have been derived for what is believed to be the first time.  相似文献   

19.
The spin angular momentum in an elliptically polarized beam of light plays several noteworthy roles in optical traps. It contributes to the linear momentum density in a nonuniform beam, and thus to the radiation pressure exerted on illuminated objects. It can be converted into orbital angular momentum, and thus can exert torques even on optically isotropic objects. Its curl, moreover, contributes to both forces and torques without spin-to-orbit conversion. We demonstrate these effects experimentally by tracking colloidal spheres diffusing in elliptically polarized optical tweezers. Clusters of spheres circulate deterministically about the beam's axis. A single sphere, by contrast, undergoes stochastic Brownian vortex circulation that maps out the optical force field.  相似文献   

20.
We study the physics of the ideal relativistic rotating gas at thermodynamical equilibrium and provide analytical expressions of the momentum spectra and polarization vector for the case of massive particles with spin 1/2 and 1. We show that the finite angular momentum J entails an anisotropy in momentum spectra, with particles emitted orthogonally to J having, on average, a larger momentum than along its direction. Unlike in the non-relativistic case, the proper polarization vector turns out not to be aligned with the total angular momentum with a non-trivial momentum dependence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号