首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 19 毫秒
1.
In this paper, an optimization of Joule-Thomson micro coolers, used in the infrared detector is performed based on minimization of irreversibility. These types of coolers have various applications in many industrial and non-industrial devices. One of the major applications of these coolers is the micro cooling system in infrared detectors. In this paper, the considerable cooling system is divided into some layer, include of the hot gas layer, cold gas layer, the buffer layer, top layer and upper layer and each layer divided into some cell. Then the energy balance (include of convective heat transfer and enthalpy flow) was applied to each cell and set of governed equations was solved with the suitable method. The comparison of the current study with experimental results shows the good accuracy of performing modeling. In the next section, irreversibility analysis was performed and the total entropy generation rate was evaluated. In the last section, optimization of the considered system is performed for minimizing of entropy generation and volume.  相似文献   

2.
程雪涛  梁新刚 《中国物理 B》2017,26(12):120505-120505
Thermal optimization is very important for improving the performances of thermal systems. In engineering, the entropy generation minimization(EGM) has been widely used to optimize and evaluate the performances of thermal systems.However, the consistency between the EGM and the optimization objective should be specified when the EGM is used.In this paper, we discuss the view angle of irreversibility of entropy generation, and show that entropy generation directly reflects the exergy destruction or the ability loss of doing work. As the design objective in a thermal system is not often consistent with the view angle of irreversibility of entropy generation, the EGM may not lead to the optimal value of the design objective. In heat transfer and heat-work conversion, the inconsistence between the design objectives and the EGM is shown with some examples, and the applicability of the EGM is found to be conditional. The "entropy generation paradox" in heat exchanger analyses is also discussed, and it is shown that there is no direct monotonic relation between the minimum entropy generation rate and the best heat transfer performance of heat exchangers.  相似文献   

3.
In thermal radiation, taking heat flow as an extensive quantity and defining the potential as temperature T or the black body emissive power U will lead to two different definitions of radiation entransy flow and the corresponding principles for thermal radiation optimization. The two definitions of radiation entransy flow and the corresponding optimization prin ciples are compared in this paper. When the total heat flow is given, the optimization objectives of the extremum entransy dissipation principles (EEDPs) developed based on potentials T and U correspond to the minimum equivalent temperature difference and the minimum equivalent blackbody emissive power difference respectively. The physical meaning of the definition based on potential U is clearer than that based on potential T, but the latter one can be used for the coupled heat transfer optimization problem while the former one cannot. The extremum entropy generation principle (EEGP) for thermal radiation is also derived, which includes the minimum entropy generation principle for thermal radiation. When the radiation heat flow is prescribed, the EEGP reveals that the minimum entropy generation leads to the minimum equivalent thermodynamic potential difference, which is not the expected objective in heat transfer. Therefore, the minimum entropy generation is not always appropriate for thermal radiation optimization. Finally, three thermal radiation optimization examples are discussed, and the results show that the difference in optimization objective between the EEDPs and the EEGP leads to the difference between the optimization results. The EEDP based on potential T is more useful in practical application since its optimization objective is usually consistent with the expected one.  相似文献   

4.
In this communication, an optimization of entropy generation is performed through thermodynamics second law. Tangent hyperbolic nanomaterial model is used which describes the important slip mechanism namely Brownian and thermophoresis diffusions. MHD fluid is considered. The novel binary chemical reaction model is implemented to characterize the impact of activation energy. Nonlinear mixed convection, dissipation and Joule heating are considered. Appropriate similarity transformations are implemented to get the required coupled ODEs system. The obtained system is tackled for series solutions by homotopy method. Graphs are constructed to analyze the impact of different flow parameters on entropy number, nanoparticle volume concentration, temperature and velocity fields. Total entropy generation rate is calculated via various flow variables. It is noticed from obtained results that entropy number depend up thermal irreversibility, viscous dissipation and Joule heating irreversibility and concentration irreversibility. Decreasing behavior of concentration is witnessed for higher estimations of chemical reaction variable. Entropy number is more for higher Hartmann number, Weissenberg number and chemical reaction variable while contrast behavior is noted for Bejan number.  相似文献   

5.
This research presents the applications of entropy generation phenomenon in incompressible flow of Jeffrey nanofluid in the presence of distinct thermal features. The novel aspects of various features, such as Joule heating, porous medium, dissipation features, and radiative mechanism are addressed. In order to improve thermal transportation systems based on nanomaterials, convective boundary conditions are introduced. The thermal viscoelastic nanofluid model is expressed in terms of differential equations. The problem is presented via nonlinear differential equations for which analytical expressions are obtained by using the homotopy analysis method (HAM). The accuracy of solution is ensured. The effective outcomes of all physical parameters associated with the flow model are carefully examined and underlined through various curves. The observations summarized from current analysis reveal that the presence of a permeability parameter offers resistance to the flow. A monotonic decrement in local Nusselt number is noted with Hartmann number and Prandtl number. Moreover, entropy generation and Bejan number increases with radiation parameter and fluid parameter.  相似文献   

6.
The effects of a heat sink and the source size and location on the entropy generation, MHD natural convection flow and heat transfer in an inclined porous enclosure filled with a Cu-water nanofluid are investigated numerically. A uniform heat source is located in a part of the bottom wall, and a part of the upper wall of the enclosure is maintained at a cooled temperature, while the remaining parts of these two walls are thermally insulated. Both the left and right walls of the enclosure are considered to be adiabatic. The thermal conductivity and the dynamic viscosity of the nanofluid are represented by different verified experimental correlations that are suitable for each type of nanoparticle. The finite difference methodology is used to solve the dimensionless partial differential equations governing the problem. A comparison with previously published works is performed, and the results show a very good agreement. The results indicate that the Nusselt number decreases via increasing the nanofluid volume fraction as well as the Hartmann number. The best location and size of the heat sink and the heat source considering the thermal performance criteria and magnetic effects are found to be D?=?0.7 and B?=?0.2. The entropy generation, thermal performance criteria and the natural heat transfer of the nanofluid for different sizes and locations of the heat sink and source and for various volume fractions of nanoparticles are also investigated and discussed.  相似文献   

7.
Entropy generation is the loss of energy in thermodynamical systems due to resistive forces,diffusion processes, radiation effects and chemical reactions. The main aim of this research is to address entropy generation due to magnetic field, nonlinear thermal radiation, viscous dissipation, thermal diffusion and nonlinear chemical reaction in the transport of viscoelastic fluid in the vicinity of a stagnation point over a lubricated disk. The conservation laws of mass and momentum along with the first law of thermodynamics and Fick's law are used to discuss the flow, heat and mass transfer, while the second law of thermodynamics is used to analyze the entropy and irreversibility. The numbers of independent variables in the modeled set of nonlinear partial differential equations are reduced using similarity variables and the resulting system is numerically approximated using the Keller box method. The effects of thermophoresis,Brownian motion and the magnetic parameter on temperature are presented for lubricated and rough disks. The local Nusselt and Sherwood numbers are documented for both linear and nonlinear thermal radiation and lubricated and rough disks. Graphical representations of the entropy generation number and Bejan number for various parameters are also shown for lubricated and rough disks. The concentration of nanoparticles at the lubricated surface reduces with the magnetic parameter and Brownian motion. The entropy generation declines for thermophoresis diffusion and Brownian motion when lubrication effects are dominant. It is concluded that both entropy generation and the magnitude of the Bejan number increase in the presence of slip. The current results present many applications in the lubrication phenomenon,heating processes, cooling of devices, thermal engineering, energy production, extrusion processes etc.  相似文献   

8.
This article concerns the analysis of an unsteady stagnation point flow of Eyring-Powell nanofluid over a stretching sheet. The influence of thermophoresis and Brownian motion is also considered in transport equations. The nonlinear ODE set is obtained from the governing nonlinear equations via suitable transformations. The numerical experiments are performed using the Galerkin scheme. A tabular form comparison analysis of outcomes attained via the Galerkin approach and numerical scheme (RK-4) is available to show the credibility of the Galerkin method. The numerical exploration is carried out for various governing parameters, namely, Brownian motion, steadiness, thermophoresis, stretching ratio, velocity slip, concentration slip, thermal slip, and fluid parameters, and Hartmann, Prandtl and Schmidt numbers. The velocity of fluid enhances with an increase in fluid and magnetic parameters for the case of opposing, but the behavior is reversed for assisting cases. The Brownian motion and thermophoresis parameters cause an increase in temperature for both cases (assisting and opposing). The Brownian motion parameter provides a drop-in concentration while an increase is noticed for the thermophoresis parameter. All the outcomes and the behavior of emerging parameters are illustrated graphically. The comparison analysis and graphical plots endorse the appropriateness of the Galerkin method. It is concluded that said method could be extended to other problems of a complex nature.  相似文献   

9.
10.
Analytical expressions are obtained for the power of the second harmonic in nonlinear crystals having a regular domain structure with allowance for thermal blooming for a Gaussian beam of basic radiation in the quasi-stationary plane-wave approximation. Calculations were carried out in both the approximation of an assigned field of basic radiation and a substantially nonlinear regime of exhaustion of basic radiation. Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 67, No. 2, pp,. 257–260, March–April, 2000.  相似文献   

11.
吴艳秋  蔡黎  吴鸿娟 《中国物理 B》2016,25(6):60507-060507
In this paper,based on the generalized heat transfer law,an air conditioning system is analyzed with the entropy generation minimization and the entransy theory.Taking the coefficient of performance(denoted as COP) and heat flow rate Q~(out) which is released into the room as the optimization objectives,we discuss the applicabilities of the entropy generation minimization and entransy theory to the optimizations.Five numerical cases are presented.Combining the numerical results and theoretical analyses,we can conclude that the optimization applicabilities of the two theories are conditional.If Q~(out) is the optimization objective,larger entransy increase rate always leads to larger Q~(out),while smaller entropy generation rate does not.If we take COP as the optimization objective,neither the entropy generation minimization nor the concept of entransy increase is always applicable.Furthermore,we find that the concept of entransy dissipation is not applicable for the discussed cases.  相似文献   

12.
A recently introduced nonlinear Fokker-Planck equation, derived directly from a master equation, comes out as a very general tool to describe phenomenologically systems presenting complex behavior, like anomalous diffusion, in the presence of external forces. Such an equation is characterized by a nonlinear diffusion term that may present, in general, two distinct powers of the probability distribution. Herein, we calculate the stationary-state distributions of this equation in some special cases, and introduce associated classes of generalized entropies in order to satisfy the H-theorem. Within this approach, the parameters associated with the transition rates of the original master-equation are related to such generalized entropies, and are shown to obey some restrictions. Some particular cases are discussed.  相似文献   

13.
Here a novel applications of entropy generation optimization is presented for nonlinear Sisko nanomaterial flow by rotating stretchable disk. Flow is examined in the absence of magnetohydrodynamics and Joule heating. Total irreversibility rate (entropy generation rate) is investigated for different flow parameters. Heat source/sink and viscous dissipation effects are considered. Impacts of Brownian motion and thermophoresis on irreversibility have been analyzed. Governing flow equations comprise momentum, energy and nanoparticle concentration. Von Karman's similarity variables are implemented for reduction of PDEs into ODEs. Homotopy analysis technique for series solutions is implemented. Attention is given to the irreversibility. The impacts of different flow parameters on velocity, nanoparticle concentration, temperature and irreversibility rate are graphically presented. From obtained results it is examined that irreversibility rate enhances for larger estimation of Brinkman number and diffusion. Furthermore it is also examined that temperature and nanoparticle concentration show contrast behavior through Prandtl number and Brownian motion.  相似文献   

14.
15.
This Letter presents a numerical study of the flow and heat transfer of an incompressible FENE-P fluid over a non-isothermal surface. The governing partial differential equations are converted into ordinary differential equations by a similarity transformation. The effects of the thermal radiation are considered in the energy equation, and the variations of dimensionless surface temperature and dimensionless surface temperature gradient, as well as the heat transfer characteristics with various physical parameters are graphed and tabulated. Two cases are studied, namely, (i) the sheet with prescribed surface temperature (PST case) and (ii) the sheet with prescribed heat flux (PHF case). Moreover, the mechanical characteristics of the corresponding flow are also presented.  相似文献   

16.
With the rapid development of micro/nanoscaled technologies, we are confronted with more and more challenges related to small-scale thermal radiation. Thorough understanding and handling of micro/nanoscaled radiative heat transfer is vital for many fields of modern science and technology. For example, proper utilization of near-field thermal radiation phenomenon greatly improves light-electric conversion efficiency. This review introduces theoretical and experimental investigation on near-field thermal radiation, especially progress in application and control of micro/nanoscaled radiative heat transfer, which addresses problems in developing renewable and sustainable energy techniques.  相似文献   

17.
This article numerically examines the boundary layer flow due to an exponentially stretching surface in the presence of an applied magnetic field. Casson fluid model is used to characterize the non-Newtonian fluid behavior. The flow is subjected to suction/blowing at the surface. Analysis is carded out in presence of thermal radiation and prescribed surface heat flux. In this study, an exponential order stretching velocity and prescribed exponential order surface heat flux are accorded with each other. The governing partial differential equations are first converted into nonlinear ordinary differential equations by using appropriate transformations and then solved numerically. The effect of increasing values of the Casson parameter is to suppress the velocity field. However the temperature is enhanced when Casson parameter increases. It is found that the skin-friction coefficient increases with increasing values of suction parameter. Temperature also increases for large values of power index n in both suction and blowing cases at the boundary. It is observed that the thermal radiation enhances the effective thermal diffusivity and hence the temperature rises.  相似文献   

18.
A three-dimensional mathematical model is developed to examine the flow of nonlinear thermal radiation Oldroyd-B nanofluid past a bidirectional linearly stretched surface in a porous medium. The flow is induced by temperature dependent thermal conductivity, chemical reaction and convective heat and mass conditions. Novel characteristics of Brownian motion and thermophoresis are accompanied by magnetohydrodynamic and heat generation/absorption. Self-similar transformations are employed to convert the system of nonlinear partial differential equations to a system of ordinary differential equations with high nonlinearity and are solved by strong analytic technique named as Homotopy Analysis method (HAM). Effects of varied arising parameters on involved distributions are reflected through graphical illustrations. From this study, it is perceived that strong magnetic field hinders the fluid's motion and leads to rise in temperature that eventually lowers heat transfer rate from the surface. Further, decrease in heat transfer rate is also observed for enhanced values of thermal radiation parameter. To validate our results, a comparison with already published paper in limiting case is also given and results are found in excellent oncurrence; hence reliable results are being presented.  相似文献   

19.
The current mathematical model explains the influence of non-linear thermal radiation on the Casson liquid flow over a moving thin needle by considering Buongiorno's nanofluid model.The influences of Stefan blowing, Dufour and Soret effects are also considered in the model. The equations which represent the described flow pattern are reduced to ordinary differential equations(ODEs) by using apt similarity transformations and then they are numerically solved with Runge–Kutta-Fehlberg's fourth fifth-order method(RKF-45) with shooting process. The impacts of pertinent parameters on thermal, mass and velocity curves are deliberated graphically.Skin friction, rate of heat and mass transfer are also discussed graphically. Results reveal that, the increase in values of Brownian motion, thermophoresis, Dufour number, heating and radiative parameters improves the heat transfer. The increasing values of the Schmidt number deteriorates the mass transfer but a converse trend is seen for increasing values of the Soret number. Finally,the escalating values of the radiative parameter decays the rate of heat transfer.  相似文献   

20.
S K Srinivasan 《Pramana》1988,30(1):59-69
The model of cavity radiation introduced earlier is analysed further by considering special types of age-specific population growth interpretable in terms of evolution through phases. The model is shown to be versatile enough to admit anti-bunched photon statistics provided the process of spontaneous emission is appropriately modelled. A four-phase model is analysed and the resulting radiation is shown to correspond to the one obtained by the superposition of two independent thermal streams each with a Lorentzian spectrum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号