首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
Under inquisition in this paper is a (2+1)-dimensional Breaking Soliton equation, which can describe various nonlinear scenarios in fluid dynamics. Using the Bell polynomials, some proficient auxiliary functions are offered to apparently construct its bilinear form and corresponding soliton solutions which are different from the previous literatures. Moreover, a direct method is used to construct its rogue wave and solitary wave solutions using particular auxiliary function with the assist of bilinear formalism. Finally, the interactions between solitary waves and rogue waves are offered with a complete derivation. These results enhance the variety of the dynamics of higher dimensional nonlinear wave fields related to mathematical physics and engineering.  相似文献   

7.
In this Letter, we consider the (2+1)-dimensional nonlinear Schrödinger's equation. With the aid of the Jacobian elliptic equation, we derive the exact bright soliton, dark soliton, singular soliton and periodic solutions of this equation expressed in terms of trigonometric functions, hyperbolic functions and Jacobian elliptic functions, respectively. Finally, for certain parametric values, we plot three dimensional graphics of modulus, real and imaginary parts of some solutions, which can help one better understand their dynamical behavior via their graphics analysis.  相似文献   

8.
9.
10.
11.
12.
We provide a classification of type AI topological quantum systems in dimension d=1,2,3,4 which is based on the equivariant homotopy properties of “Real” vector bundles. This allows us to produce a fine classification able to take care also of the non stable regime which is usually not accessible via K-theoretic techniques. We prove the absence of non-trivial phases for one-band AI free or periodic quantum particle systems in each spatial dimension by inspecting the second equivariant cohomology group which classifies “Real” line bundles. We also show that the classification of “Real” line bundles suffices for the complete classification of AI topological quantum systems in dimension d3. In dimension d=4 the determination of different topological phases (for free or periodic systems) is fixed by the second “Real” Chern class which provides an even labeling identifiable with the degree of a suitable map. Finally, we provide explicit realizations of non trivial 4-dimensional free models for each given topological degree.  相似文献   

13.
14.
15.
《Nuclear Physics B》2006,746(3):155-201
The set of dynamic symmetries of the scalar free Schrödinger equation in d space dimensions gives a realization of the Schrödinger algebra that may be extended into a representation of the conformal algebra in d+2 dimensions, which yields the set of dynamic symmetries of the same equation where the mass is not viewed as a constant, but as an additional coordinate. An analogous construction also holds for the spin-12 Lévy-Leblond equation. An N=2 supersymmetric extension of these equations leads, respectively, to a ‘super-Schrödinger’ model and to the (3|2)-supersymmetric model. Their dynamic supersymmetries form the Lie superalgebras osp(2|2)sh(2|2) and osp(2|4), respectively. The Schrödinger algebra and its supersymmetric counterparts are found to be the largest finite-dimensional Lie subalgebras of a family of infinite-dimensional Lie superalgebras that are systematically constructed in a Poisson algebra setting, including the Schrödinger–Neveu–Schwarz algebra sns(N) with N supercharges. Covariant two-point functions of quasiprimary superfields are calculated for several subalgebras of osp(2|4). If one includes both N=2 supercharges and time-inversions, then the sum of the scaling dimensions is restricted to a finite set of possible values.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号