首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 0 毫秒
1.
Nanofluids are embryonic as auspicious thermo liquids for application of heat transfer which have been scrutinized precisely, in current eons. Thermo-physical properties of these liquids have noteworthy stimulus on their heat transfer features. The manifestation of dense nanoparticles in the base liquid ominously intensifies the effective liquid thermal conductivity and therefore heightens the features of heat transfer. The highest attention of this exertion is to investigate the features of nanoparticles mass flux conditions and non-uniform heat sink/source on magnetite Oldroyd-B nanofluid. Additionally, heat convective and thermal radiation mechanisms are considered. Homotopic approach has been established for the solution of non-linear structures. The upshots elucidate that the Brownian and thermophrosis nanoparticles exaggerate the temperature field, however analogous tendency is being noted for thermal radiation and non-uniform heat sink/source parameters. This exertion also investigated that the concentration of Oldroyd-B nanofluid decline for curvature parameter and augment for thermophrosis parameter. In addition, for the endorsement of up-to-date derived clarifications a comparison table of skin friction coefficient is organized in limiting circumstances.  相似文献   

2.
In countless applications, there is a thoughtful necessity for augmenting the poor thermal conductivity of conventional liquids to improve effectual heat transfer liquids. Nanofluids are fluids interruptions of nanoparticles and broad scrutiny have been presented on nanoliquid solicitations in heat transfer progressions. The intention of this exertion is to scrutinize the dual nature solutions of unsteady magnetite Carreau nanofluid influenced by porous stretching/shrinking surface. The phenomena of heat and mass transfer have been established in the manifestation of combined convective conditions with heat sink/source and variable thermal conductivity. By utilizing compatible conversions to rehabilitate the structure of nonlinear partial differential equations (PDEs) into nonlinear ordinary differential equations (ODEs) which were then elucidated numerically via bvp4c. Under the impact of diverse somatic parameters the graphical depiction of all the probable dual solutions of velocity, temperature, concentration, skin-friction coefficient, local Nusselt and Sherwood numbers are scrutinized. These outcomes specify that the liquid velocity display similar tendency for both upper and lower solutions and decline for unsteadiness parameter, while it enhance for Weissenberg number.  相似文献   

3.
An analysis has been carried out to study the effects of thermal-diffusion and diffusion-thermo on non-Darcian mixed convection heat and mass transfer of an incompressible, electrically conducting fluid over a stretching sheet embedded in a porous medium in the presence of an external magnetic field and non-uniform heat source/sink. Similarity transformations are used to convert highly non-linear partial differential equations into ordinary differential equations. Similarity equations are then solved numerically using shooting algorithm with Runge-Kutta-Fehlberg scheme over the entire range of physical parameters. The effects of various physical parameters on the dimensionless velocity, temperature and concentration profiles are depicted graphically. Present results are compared with previously published work on various special cases of the problem and the results are found to be in very good agreement. Numerical results for local skin-friction, local Nusselt number and local Sherwood number are tabulated for different physical parameters.  相似文献   

4.
《Physics letters. A》2019,383(18):2201-2206
This investigation presents the unsteady rheology of Maxwell nanomaterial induced to flow over an inclined surface. Simultaneous effects of stratification, thermal radiation, heat source/sink and magnetic field are taken into account. Viscous dissipation and mixed convection due to concentration and temperature differences are also analyzed. The governing partial differential equations for the Maxwell nanofluid which incorporate the effects of Brownian and thermophoresis effects are simplified by using appropriate similarity transformations, and solved analytically by using homotopy analysis method (HAM). The effects of involved physical parameters on the flow field are analyzed graphically and numerically.  相似文献   

5.
Here a novel applications of entropy generation optimization is presented for nonlinear Sisko nanomaterial flow by rotating stretchable disk. Flow is examined in the absence of magnetohydrodynamics and Joule heating. Total irreversibility rate (entropy generation rate) is investigated for different flow parameters. Heat source/sink and viscous dissipation effects are considered. Impacts of Brownian motion and thermophoresis on irreversibility have been analyzed. Governing flow equations comprise momentum, energy and nanoparticle concentration. Von Karman's similarity variables are implemented for reduction of PDEs into ODEs. Homotopy analysis technique for series solutions is implemented. Attention is given to the irreversibility. The impacts of different flow parameters on velocity, nanoparticle concentration, temperature and irreversibility rate are graphically presented. From obtained results it is examined that irreversibility rate enhances for larger estimation of Brinkman number and diffusion. Furthermore it is also examined that temperature and nanoparticle concentration show contrast behavior through Prandtl number and Brownian motion.  相似文献   

6.
 对于高密度、导通时间为μs级的柱状等离子体开关,利用磁流体动力学理论(MHD),对其导通阶段的磁场穿透过程进行了模拟,得到了磁场分布随时间的变化;研究了开关导通过程中能量输运导致的温度不均匀分布对磁场穿透过程的影响。模拟结果表明:对于高密度等离子体开关,磁场以远大于磁扩散速率的速度穿透到等离子体中;在磁压对等离子体产生的压缩效应和欧姆加热效应共同作用下,激波区域的等离子体温度显著升高,这进一步加速了磁场穿透;当考虑能量输运方程时,开关导通时间为0.87 μs,比等温模型的结果0.92 μs短,与实验结果0.87 μs相一致。  相似文献   

7.
The effects of a heat sink and the source size and location on the entropy generation, MHD natural convection flow and heat transfer in an inclined porous enclosure filled with a Cu-water nanofluid are investigated numerically. A uniform heat source is located in a part of the bottom wall, and a part of the upper wall of the enclosure is maintained at a cooled temperature, while the remaining parts of these two walls are thermally insulated. Both the left and right walls of the enclosure are considered to be adiabatic. The thermal conductivity and the dynamic viscosity of the nanofluid are represented by different verified experimental correlations that are suitable for each type of nanoparticle. The finite difference methodology is used to solve the dimensionless partial differential equations governing the problem. A comparison with previously published works is performed, and the results show a very good agreement. The results indicate that the Nusselt number decreases via increasing the nanofluid volume fraction as well as the Hartmann number. The best location and size of the heat sink and the heat source considering the thermal performance criteria and magnetic effects are found to be D?=?0.7 and B?=?0.2. The entropy generation, thermal performance criteria and the natural heat transfer of the nanofluid for different sizes and locations of the heat sink and source and for various volume fractions of nanoparticles are also investigated and discussed.  相似文献   

8.
Radiative heat transfer in the steady two-dimensional flow of Walters' B fluid with a non-uniform heat source/sink is investigated. An incompressible fluid is bounded by a stretching porous surface. The convective boundary condition is used for the thermal boundary layer problem. The relevant equations are first simplified under usual boundary layer assumptions and then transformed into a similar form by suitable transformations. Explicit series solutions of velocity and temperature are derived by the homotopy analysis method(HAM). The dimensionless velocity and temperature gradients at the wall are calculated and discussed.  相似文献   

9.
Peristaltic motion induced by a surface acoustic wave of a viscous, compressible and electrically conducting Maxwell fluid in a confined parallel-plane microchannel through a porous medium is investigated in the presence of a constant magnetic field. The slip velocity is considered and the problem is discussed only for the free pumping case. A perturbation technique is employed to analyze the problem in terms of a small amplitude ratio. The phenomenon of a “backward flow” is found to exist in the center and at the boundaries of the channel. In the second order approximation, the net axial velocity is calculated for various values of the fluid parameters. Finally, the effects of the parameters of interest on the mean axial velocity, the reversal flow, and the perturbation function are discussed and shown graphically. We find that in the non-Newtonian regime, there is a possibility of a fluid flow in the direction opposite to the propagation of the traveling wave. This work is the most general model of peristalsis created to date with wide-ranging applications in biological, geophysical and industrial fluid dynamics.  相似文献   

10.
The thermal attributes of porous fin due to radiation and natural convection have been carried out in the presence of nanofluid flow. The geometry of the fin taken for the analysis is rectangular profiled longitudinal fin. The temperature-dependent internal heat generation condition is also considered along with Darcy's model. The two types of nanofluid containing titanium alloy(Ti6Al4V) and aluminium alloy(AA7075) immersed in water is considered for the investigation.The modelled nonlinear ordinary differential equation is numerically solved by the Runge–Kutta–Fehlberg technique. The impact of geometric parameter on the heat transfer analysis of the fin due to the flow of both nanofluids is plotted and consequences are physically interpreted. It is observed that the presence of the water-based titanium alloy better enhances the fin heat transfer rate.  相似文献   

11.
In the present analysis, a numerical study is performed to examine the heat transfer characteristics of a convective flow over a vertical plate under the combined effects of magnetic field and thermal radiation in the presence of heat source/sink. The surface of the plate is subjected to a variable surface temperature. The boundary layer equations governing the flow are reduced to non-dimensional equations valid in the free convection regime using the suitable non-dimensional parameters. The dimensionless governing equations are solved by an implicit finite difference method of Crank—Nicolson type which is fast convergent, more accurate and unconditionally stable. Numerical results are obtained and presented for velocity, temperature, local and average wall shear stress, local and average Nusselt number in air. The present results are compared with the results available in the literature and are found to be in an excellent agreement.  相似文献   

12.
This Letter discusses the influence of heat transfer and magnetic field on the peristaltic flow of Newtonian fluid in a vertical annulus under a zero Reynolds number and long wavelength approximation. The inner tube is uniform, rigid, while the outer tube has a sinusoidal wave traveling down its wall. The flow is investigated in a wave frame of reference moving with velocity of the wave. Numerical calculations are carried out for the pressure rise and frictional forces. The features of the flow characteristics are analyzed by plotting graphs and discussed in detail.  相似文献   

13.
Lie groups involving potential symmetries are applied in connection with the system of magnetohydrodynamic equations for incompressible matter with Ohm's law for finite resistivity and Hall current in cylindrical geometry. Some simplifications allow to obtain a Fokker-Planck type equation. Invariant solutions are obtained involving the effects of time-dependent flow and the Hall-current. Some interesting side results of this approach are new exact solutions that do not seem to have been reported in the literature.  相似文献   

14.
李玉现  李伯臧 《中国物理》2005,14(5):1021-1024
利用传递矩阵方法,我们计算了自旋轨道耦合和磁场对准一维铁磁/半导体/铁磁系统中电子输运性质的影响。计算结果发现,透射系数的振幅随磁场增加而增大。在反铁磁排列时,即使在磁场作用下,上、下自旋电子具有相同的透射系数。与不加磁场时的情况相反,在一定的磁场和耦合强度时,铁磁排列中,上自旋电子的透射系数大于下自旋电子的,而且出现了自旋反转。  相似文献   

15.
The effect of heat treatment on the optical and electrical properties of Ge15Sb10Se75 and Ge25Sb10Se65 thin films in the range of annealing temperature 373-723 K has been investigated. Analysis of the optical absorption data indicates that Tauc's relation for the allowed non-direct transition successfully describes the optical processes in these films. The optical band gap (Egopt.) as well as the activation energy for the electrical conduction (ΔE) increase with the increase of annealing temperature (Ta) up to the glass transition temperature (Tg). Then a remarkable decrease in both the Egopt. and ΔE values occurred with a further increase of the annealing temperature (Ta>Tg). The obtained results were explained in terms of the Mott and Davis model for amorphous materials and amorphous to crystalline structure transformations. Furthermore, the deduced value of Egopt. for the Ge25Sb10Se65 thin film is higher than that observed for the Ge15Sb10Se75 thin film. This behavior was discussed on the basis of the chemical ordered network model (CONM) and the average value for the overall mean bond energy 〈E〉 of the amorphous system GexSb10Se90−x with x=15 and 25 at%. The annealing process at Ta>Tg results in the formation of some crystalline phases GeSe, GeSe2 and Sb2Se3 as revealed in XRD patterns, which confirms our discussion of the obtained results.  相似文献   

16.
为了探索焦磷酸盐镀铜层与铁基体结合强度差的原因,采用波谱技术,分析了纵向界面各种元素的成分变化,讨论了金属基体表面粗糙度对元素分布的影响.根据刻蚀时间可将膜层分为三部分:N,O量迅速减少的表面层,有基本固定组成的中间层和占一半厚度的出现基体元素的混合干扰层.通过对后期混合层中氧含量的分析,可得出镀铜层/铁基体界面含氧层的存在是影响电镀层与基体结合强度的主要原因的结论.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号