首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
麦克斯韦应力张量方法及其应用   总被引:3,自引:1,他引:2  
黄晓琴 《大学物理》1995,14(10):9-11
运用一种巧妙计算场力的方法-Maxwell应力张量方法计算了带电球体内部的库仓力,并由此推广到引力场中的应用。  相似文献   

2.
静电场中电介质表面上受的力,一般虽可从功和能的关系求解,但本质上实为电磁场应力张量的作用.本文中将引述沿电力线的纵向及横向应力的概念,并且用简便方法引入静电场中张应力 T 及压应力 P 的表达式,因而得以形象地理解电介质表面所受的力,并可直接进行计算.  相似文献   

3.
绕过张量计算的困难,引入静电应力方法处理静电场问题,澄清了某些模糊认识。  相似文献   

4.
关于引力场的能量问题   总被引:2,自引:0,他引:2       下载免费PDF全文
郑玉昆 《物理学报》1981,30(1):46-56
本文讨论引力场中局部区域的能量问题。这里提出了一个新的引力场总能量-动量赝张量密度,它所表示的引力场局部空间区域中的能量对纯空间坐标变换是不变量,因而引力场的局部区域能量具有确定的物理意义。关于Schwarzschild场的能量和动量,新的赝张量给出的结果要比现有广义相对论文献中的其他形式的赝张量所给出的结果较为合理。文中还讨论了在引力理论中质量与能量的关系问题。 关键词:  相似文献   

5.
在大多数电磁场教材中,研究静电场中介质体受力均从静电能出发,由虚功原理求解.本文应用电磁场张力张量,推导出适用于静电场中二不同介质分界面上的应力计算公式,因而可以直接计算介质上所受的力,并举例应用.  相似文献   

6.
李儒颂  徐芹  叶文江 《物理通报》2015,34(12):103-108
基于牛顿的万有引力定律与静电场的库仑定律相似, 均满足平方反比定律, 对引力场的高斯定理进行 了探讨. 运用类比思想, 引入虚引力场强度, 提出了一种巧妙推导引力场高斯定理的新方法, 并用该方法推导出引力 场高斯定理的两种不同的表达形式, 同时对此做出了相关的分析. 理论表明该方法极其简单明了, 易于理解和掌握 运用, 具有一定的推广价值  相似文献   

7.
江遴汉 《工科物理》1998,8(3):15-18
从点电荷的场强公式出发,根据狭义相对论中场强张量的交换,推导出了静电场和稳恒电流磁场的诸定律,使学生对电场和磁场的统一性有了更为深刻的认识。  相似文献   

8.
从点电荷的场强公式出发,根据狭义相对论中场强张量的变换,推导出了静电场和稳恒电流磁场的诸定律,使学生对电场和磁场的统一性有了更为深刻的认识.  相似文献   

9.
刘佑昌 《物理学报》1979,28(2):152-159
本文援引胡宁所推广的引力场总能量动量赝张量密度式,计算了双星系统的能量,其结果是正常的。然而,这能量的分布却是不确定的;分布的规律基本上与孤立静止星球的席瓦兹外域场一致。如果认为场源物质所产生的引力场不再具有引力质量,则可决定该密度式中的n值,即引力场能量的分布也被确定。 关键词:  相似文献   

10.
旋转物体的等效原理及其空间实验   总被引:1,自引:1,他引:0  
文章回溯了等效原理的历史,解释了弱等效原理(伽利略等效原理)、强等效原理(爱因斯坦等效原理)和甚强等效原理.实验检验表明,到10-13的实验精度时,没有观测到等效原理的破坏.文章最后,也是文章的主要目的,阐述了广义相对论的不足,即不能描写物质的自旋与引力场的耦合.自旋粒子或自转物体的能一动张量既有对称分量,也有非对称的分量,还有自旋张量.但是广义相对论的引力场方程中只包含了能-动张量对称分量,不包含反对称分量,更没有自旋张量的贡献.涉及自旋与引力场耦合的理论是(有挠率场的)引力规范理论,该理论预言:自旋粒子或旋转物体将偏离测地运动,因而破坏等效原理.为了检验这种破坏,文章作者及其合作者建议进行地面实验和空间实验.  相似文献   

11.
12.
谭福培 《物理学报》1964,20(5):429-435
本文研究电、磁场作用于扁球导体、磁导体上的力矩。根据基本解答和把体积力公式运用于扁球体面上后(包括平面上有半扁球形突面的边界问题〕,得出静电问题的较为普遍的解式。又由于静电、静磁张力公式的简单对应关系存在,故很容易把所得到的公式直接推广到对应的静磁问题上去,最后根据所得的解式,我们得到了若干有益的结论。  相似文献   

13.
In General Relativity, the graviton interacts in three-graviton vertex with a tensor that is not the energy-momentum tensor of the gravitational field. We consider the possibility that the graviton interacts with the definite gravitational energy-momentum tensor that we previously found in the G 2 approximation. This tensor in a gauge, where nonphysical degrees of freedom do not contribute, is remarkable, because it gives positive gravitational energy density for the Newtonian center in the same manner as the electromagnetic energy-momentum tensor does for the Coulomb center. We show that the assumed three-graviton vertex does not lead to contradiction with the precession of Mercury’s perihelion. In the S-matrix approach used here, the external gravitational field has only a subsidiary role, similar to the external field in quantum electrodynamics. This approach with the assumed vertex leads to the gravitational field that cannot be obtained from a consistent gravity equation.  相似文献   

14.
Weak electromagnetic and gravitational fields in a plasma situated in a strong gravitational field, are studied using linearized, general-relativistic, kinetic equations. A tensor operator is constructed for the electrical conductivity of a plasma in a gravitational field, which is a general-relativistic generalization of the electrical conductivity of a homogeneous plasma. Similar tensor operators, which allow one to determine the energy-momentum tensor and the vector current, induced by electromagnetic and gravitational fields in a plasma, are also obtained.Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 9, pp. 57–62, September, 1976.  相似文献   

15.
We use the theory based on a gravitational gauge group (Wu's model) to obtain a spherical symmetric solution of the field equations for the gravitational potential on a Minkowski spacetime. The gauge group, the gauge covariant derivative, the strength tensor of the gauge feld, the gauge invariant Lagrangean with the cosmological constant, the field equations of the gauge potentiaIs with a gravitational energy-momentum tensor as well as with a tensor of the field of a point like source are determined. Finally, a Reissner-Nordstrom-de Sitter-type metric on the gauge group space is obtained.  相似文献   

16.
The macroscopic stress-energy tensor of an astronomical medium such as a galaxy of stars is determined by the field equation of general relativity from the small-scale variations in mass and velocity. In the weak-field, slow-motion approximation, in which the gravitational fields of the stars are Newtonian, it is found that the contribution by the small-scale gravitational fields to the macroscopic density and stress are, respectively, the Newtonian gravitational energy density and the Newtonian gravitational stress tensor. This result is based on the general-relativity field equation, not conservation laws, although the general-relativity field equation has the well-known property of being consistent with conservation laws.  相似文献   

17.
A non-geometric relativistic theory of gravitation is developed by defining a semi-metric to replace the metric tensor as gravitational vector potential. The theory show that the energy-momentum tensor of the gravitational field belong to the gravitational source, gravitational radiation is contained in Einstein’s field equations that including the contribution of gravitational field, the real physical singularity in the gravitational field can be eliminated, and the dark matter in the universe is interpreted as the matter of pure gravitational field.  相似文献   

18.
A classical model of the spinning electron in general relativity consisting of a rotating charge distribution with Poincaré stresses is set up. It is made out of a continuous superposition of thin charged shells with differential rotation. Each elementary shell is maintained in stationary equilibrium in the gravitational field created by the others. A class of interior solutions of the Kerr-Newman field is thus obtained. The corresponding stress-energy tensor naturally splits into the sum of two terms. The first one is the Maxwell tensor associated to a rotating charge distribution, and the second one corresponds to a material source having zero energy density everywhere, no radial pressure, and an isotropic transverse stress. These negative pressures or tensions are identified with the cohesive forces introduced by Poincaré to stabilize the Lorentz electron model. They are shown to be the source of a negative gravitational mass density and thereby of the violation of the energy conditions inside the electron.  相似文献   

19.
In the context of a gauge theory for the translation group, a conserved energy-momentum gauge current for the gravitational field is obtained. It is a true spacetime and gauge tensor, and transforms covariantly under global Lorentz transformations. By rewriting the gauge gravitational field equation in a purely spacetime form, it becomes the teleparallel equivalent of Einstein's equation, and the gauge current reduces to the Moller's canonical energy-momentum density of the gravitational field.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号