首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The onset of Darcy–Brinkman double-diffusive convection in a binary viscoelastic fluid-saturated porous layer is studied using both linear and weakly nonlinear stability analyses. The Oldroyd-B model is employed to describe the rheological behavior of the fluid. An extended form of Darcy–Oldroyd law incorporating the Brinkman’s correction and time derivative is used to describe the fluid flow and the Oberbeck–Boussinesq approximation is invoked. The onset criterion for stationary and oscillatory convection is derived analytically. The effects of rheological parameters, Darcy number, normalized porosity, Lewis number, solute Rayleigh number, and Darcy–Prandtl number on the stability of the system is investigated. The results indicated that there is a competition among the processes of thermal, solute diffusions and viscoelasticity that causes the convection to set in through the oscillatory modes rather than the stationary. The Darcy–Prandtl number has a dual effect on the threshold of oscillatory convection. The nonlinear theory based on the method of truncated representation of Fourier series is used to find the transient heat and mass transfer. Some existing results are reproduced as the particular cases of present study.  相似文献   

2.
An analytical study of fluid flow and heat transfer in a composite channel is presented. The channel walls are maintained at different constant temperatures in such a way that the temperatures do not allow for free convection. The upper plate is considered to be moving and the lower plate is fixed. The flow is modeled using Darcy–Lapwood–Brinkman equation. The viscous and Darcy dissipation terms are included in the energy equation. By applying suitable matching and boundary conditions, an exact solution has been obtained for the velocity and temperature distributions in the two regions of the composite channel. The effects of various parameters such as the porous medium parameter, viscosity ratio, height ratio, conductivity ratio, Eckert number, and Prandtl number on the velocity and temperature fields are presented graphically and discussed.  相似文献   

3.
The present investigation addresses non-Darcian effects on the buoyancy-induced heat transfer in a partially divided square enclosure with internal heat generation. The generalized model of the momentum equation, which is also known as the Forchheimer–Brinkman extended Darcy model, which takes into account boundary and inertia effects, was used in representing the fluid motion inside the porous layer. The local thermal equilibrium condition was assumed to be valid for the range of the thermophysical parameters considered in the present investigation. The transport equations were solved using the finite element formulation based on the Galerkin method of weighted residuals. The validity of the numerical code used was ascertained by comparing our results with previously published results. Results were obtained in terms of streamlines, isotherms, and Nusselt number for various geometrical parameters specifying the height and width of the partition. In addition, the effects of external and internal Rayleigh numbers and Darcy number were highlighted in the proposed study.  相似文献   

4.
Most porous solids are inhomogeneous and anisotropic, and the flows of fluids taking place through such porous solids may show features very different from that of flow through a porous medium with constant porosity and permeability. In this short paper we allow for the possibility that the medium is inhomogeneous and that the viscosity and drag are dependent on the pressure (there is considerable experimental evidence to support the fact that the viscosity of a fluid depends on the pressure). We then investigate the flow through a rectangular slab for two different permeability distributions, considering both the generalized Darcy and Brinkman models. We observe that the solutions using the Darcy and Brinkman models could be drastically different or practically identical, depending on the inhomogeneity, that is, the permeability and hence the Darcy number.  相似文献   

5.
An analysis of fully developed combined free and forced convective flow in a fluid saturated porous medium channel bounded by two vertical parallel plates is presented. The flow is modeled using Brinkman equation model. The viscous and Darcy dissipation terms are also included in the energy equation. Three types of thermal boundary conditions such as isothermal–isothermal, isoflux–isothermal, and isothermal–isoflux for the left–right walls of the channel are considered. Analytical solutions for the governing ordinary differential equations are obtained by perturbation series method. In addition, closed form expressions for the Nusselt number at both the left and right channel walls are derived. Results have been presented for a wide range of governing parameters such as porous parameter, ratio of Grashof number and Reynolds number, viscosity ratio, width ratio, and conductivity ratio on velocity, and temperature fields. It is found that the presence of porous matrix in one of the region reduces the velocity and temperature.  相似文献   

6.
The Brinkman extended Darcy model including Lapwood and Forchheimer inertia terms with fluid viscosity being different from effective viscosity is employed to investigate the effect of vertical throughflow on thermal convective instabilities in a porous layer. Three different types of boundary conditions (free–free, rigid–rigid and rigid–free) are considered which are either conducting or insulating to temperature perturbations. The Galerkin method is used to calculate the critical Rayleigh numbers for conducting boundaries, while closed form solutions are achieved for insulating boundaries. The relative importance of inertial resistance on convective instabilities is investigated in detail. In the case of rigid–free boundaries, it is found that throughflow is destabilizing depending on the choice of physical parameters and the model used. Further, it is noted that an increase in viscosity ratio delays the onset of convection. Standard results are also obtained as particular cases from the general model presented here.  相似文献   

7.
The effect of temperature modulation on the onset of double diffusive convection in a sparsely packed porous medium is studied by making linear stability analysis, and using Brinkman-Forchheimer extended Darcy model. The temperature field between the walls of the porous layer consists of a steady part and a time dependent periodic part that oscillates with time. Only infinitesimal disturbances are considered. The effect of permeability and thermal modulation on the onset of double diffusive convection has been studied using Galerkin method and Floquet theory. The critical Rayleigh number is calculated as a function of frequency and amplitude of modulation, Vadasz number, Darcy number, diffusivity ratio, and solute Rayleigh number. Stabilizing and destabilizing effects of modulation on the onset of double diffusive convection have been obtained. The effects of other parameters are also discussed on the stability of the system. Some results as the particular cases of the present study have also been obtained. Also the results corresponding to the Brinkman model and Darcy model have been compared.  相似文献   

8.
The article reports a numerical study of entropy generation in double-diffusive convection through a square porous cavity saturated with a binary perfect gas mixture and submitted to horizontal thermal and concentration gradients. The analysis is performed using Darcy–Brinkman formulation with the Boussinesq approximation. The set of coupled equations of mass, momentum, energy and species conservation are solved using the control volume finite-element method. Effects of the Darcy number, the porosity and the thermal porous Rayleigh number on entropy generation are studied. It was found that entropy generation considerably depends on the Darcy number. Porosity induces the increase of entropy generation, especially at higher values of thermal porous Rayleigh number.  相似文献   

9.
In this paper, a detailed investigation on the flow past a porous covering cylinder is presented through the lattice Boltzmann method. The Brinkman‐Forchheimer‐extended Darcy model is adopted for the entire flow field with the solid, fluid, and porous medium. The effects of several parameters, such as porous layer thickness, Darcy number, porosity, and Reynolds number on flow field are discussed. Compared with the case of a solid cylinder, the present work shows that the porous layer may play an important role on the flow, the lift and drag force exerted on the cylinder. The numerical results indicate that the maximal drag coefficient Cd and maximal amplitude of lift coefficient Cl exist at certain Darcy number which is in the range of 10?6–10?2. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
The characteristics of the boundary layer flow past a plane surface adjacent to a saturated Darcy–Brinkman porous medium are investigated in this paper. The flow is driven by an external free stream moving with constant velocity. The surface is heated with a convective boundary condition with constant heat transfer coefficient. The problem is non-similar and is investigated numerically by a finite difference method. The problem is governed by four non-dimensional parameters, that is, the convective Darcy number, the convective Grashof number, the Prandtl number, and the axial distance along the plate. The influence of these parameters on the results is investigated, and the results are presented in tables and figures. The Darcy term and the Grashof term in the momentum equation contradict each other and this contradiction makes the problem complicated. However, the wall shear stress and the wall temperature increase continuously along the plate and the wall temperature always tends to 1.  相似文献   

11.
This work reports on fluid flow in a fluid-saturated porous medium, accounting for the boundary and inertial effects in the momentum equation. The flow is simulated by Brinkman-Forchheimer-extended Darcy formulation (DFB), using MAC (Marker And Cell) and Chorin pressure iteration method. The method is validated by comparison with analytic results. The effect of Reynolds number, Darcy number, porosity and viscosity ratio on velocity is investigated. As a result, it is found that Darcy number has a decisive influence on pressure as well as velocity, and the effect of viscosity ratio on velocity is very strong given the Darcy number. Additional key findings include unreasonable choice of effective viscosity can involve loss of important physical information.  相似文献   

12.
M. M. Rahman 《Meccanica》2011,46(5):1127-1143
This paper presents heat transfer process in a two-dimensional steady hydromagnetic convective flow of an electrically conducting fluid over a flat plate with partial slip at the surface of the boundary subjected to the convective surface heat flux at the boundary. The analysis accounts for both temperature-dependent viscosity and temperature dependent thermal conductivity. The local similarity equations are derived and solved numerically using the Nachtsheim-Swigert iteration procedure. Results for the dimensionless velocity, temperature and ambient Prandtl number within the boundary layer are displayed graphically delineating the effect of various parameters characterizing the flow. The results show that momentum boundary layer thickness significantly depends on the surface convection parameter, Hartmann number and on the sign of the variable viscosity parameter. The results also show that plate surface temperature is higher when there is no slip at the plate compared to its presence. For both slip and no-slip cases surface temperature of the plate can be controlled by controlling the strength of the applied magnetic field. In modelling the thermal boundary layer flow with variable viscosity and variable thermal conductivity, the Prandtl number must be treated as a variable irrespective of flow conditions whether there is slip or no-slip at the boundary to obtain realistic results.  相似文献   

13.
A modified Graetz methodology is applied to investigate the thermal development of forced convection in a circular duct filled by a saturated porous medium, with walls held at constant temperature, and with the effects of longitudinal conduction and viscous dissipation included. The Brinkman model is employed. The analysis leads to expressions for the local Nusselt number, as a function of the dimensionless longitudinal coordinate and other parameters (Darcy number, Péclet number, Brinkman number).  相似文献   

14.
Numerical investigation of steady natural convection flow through a fluid-saturated porous medium in a vertical rectangular duct is investigated. The Darcy-Forchheimer-Brinkman model is used to represent the fluid transport within the porous medium. One of the vertical walls of the duct is cooled to a constant temperature, while the other wall is heated to constant but different temperature. The other two sides of the duct are insulated. The finite difference method of second-order accuracy is used to solve the non-dimensional governing equations. The results are presented graphically to show the effects of the Darcy number, inertial parameter, Grashof number, Brinkman number, aspect ratio, and viscosity ratio. It is found that an increase in the Darcy number and inertial parameter reduces the flow intensity whereas an increase in the Grashof number, Brinkman number, aspect ratio, and viscosity ratio increases the flow intensity.  相似文献   

15.
This study addresses the Brinkman-extended Darcy model (Brinkman flow) of a laminar free-convective flow in an annular porous region. Closed form expressions for Velocity field, Temperature field, Skin-friction and Mass flow rate are given, under a thermal boundary condition of mixed kind at the outer surface of the inner cylinder while the inner surface of the outer cylinder is isothermal. The governing independent parameters are identified to be Darcy number (Da) and ratio of outer to inner radii (R). It is hoped that the study of such flows gives limiting conditions for developing flows and provides an analytical check on numerical solutions for more complex problems dealing with non-Darcian free-convection flow in an annular region.  相似文献   

16.
A numerical study of forced convection enhancement in a channel intermittently heated is presented in this work. The use of porous blocks mounted on the heated parts of the channel to improve thermal performance is investigated. In order to account for the inertia, drag and boundary effects, the Brinkman-Forchheimer-extended Darcy model is adopted for the flow inside the porous regions. The effects of several parameters such as Darcy number, the block dimensions, the number of blocks and the thermal conductivity ratio are documented. The results show that the blocks may alter substantially the flow pattern depending on the permeability of the porous medium, and may improve the heat transfer and reduce the wall temperature under certain circumstances. Received on 9 June 1997  相似文献   

17.
IntroductionTheproblemofforcedconvectioninaporousmediumchannelorductisaclassicalone (atleastforthecaseofslugflow (Darcymodel) .Therehasrecentlybeenrenewedinterestintheproblembecauseoftheuseofhyperporousmediainthecoolingofelectronicequipment.Recently ,NieldandBejan[1]refertomorethan 3 0papersonthetopic ,butnoneofthemdealsexplicitlywiththecaseofthermaldevelopment.ThisgapintheliteraturehasbeenpartlyfilledbyNieldetal.[2 - 4 ].Lahjomrietal.[5 ,6 ]havesolvedmathematicallysimilarproblemsbyusingthe…  相似文献   

18.
The effects of viscous dissipation on thermal entrance heat transfer in a parallel plate channel filled with a saturated porous medium, is investigated analytically on the basis of a Darcy model. The case of isothermal boundary is treated. The local and the bulk temperature distribution along with the Nusselt number in the thermal entrance region were found. The fully developed Nusselt number, independent of the Brinkman number, is found
to be 6. It is observed that neglecting the effects of viscous dissipation would lead to the well-known case of internal flows, with Nusselt number equal to 4.93. A finite difference numerical solution is also utilized. It is seen that the results of these two methods, analytical and numerical, are in good agreement.  相似文献   

19.
The diffusion‐thermo and thermal‐diffusion effects on heat and mass transfer by mixed convection boundary layer flow over a vertical isothermal permeable surface embedded in a porous medium were studied numerically in the presence of chemical reaction with temperature‐dependent viscosity. The governing nonlinear partial differential equations are transformed into a set of coupled ordinary differential equations, which are solved numerically by using Runge–Kutta method with shooting technique. Numerical results are obtained for the velocity, temperature and concentration distributions, and the local skin friction coefficient, local Nusselt number and local Sherwood number for several values of the parameters, namely, the variable viscosity parameter, suction/injection parameter, Darcy number, chemical reaction parameter, and Dufour and Soret numbers. The obtained results are presented graphically and in tabulated form, and the physical aspects of the problem are discussed. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

20.
A numerical method was developed for flows involving an interface between a homogeneous fluid and a porous medium. It is based on the finite volume method with body‐fitted and multi‐block grids. The Brinkman–Forcheimmer extended model was used to govern the flow in the porous medium region. At its interface, the flow boundary condition imposed is a shear stress jump, which includes the inertial effect, together with a continuity of normal stress. The thermal boundary condition is continuity of temperature and heat flux. The forced convection through a porous insert over a backward‐facing step is investigated. The results are presented with flow configurations for different Darcy numbers, 10?2 to 10?5, porosity from 0.2 to 0.8, Reynolds number from 10 to 800, and the ratio of insert length to channel height from 0.1 to 0.3. The heat transfer is improved by using porous insert. To enhance the heat transfer with minimal frictional losses, it is preferable to have a medium length of insert with medium Darcy number, and larger Reynolds number. The interfacial stress jump coefficients β and β1 were varied from ?1 to 1, and within this range the average and local lower‐wall Nusselt numbers are not sensitive to the parameters. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号