首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To develop a smart free-standing surface enhanced Raman scattering(SERS) substrate,silver nanoparticles(AgNPs) embedded temperature-sensitive nanofibrous membrane was fabricated by electrospinning their aqueous solution containing the copolymer poly(N-isopropylacrylamide-co-Nhydroxymethylacrylamide),followed by heat treatment to form crosslinking structure within its constituent nanofibers.To avoid negative effect of the additive like stabilizer and the reactant like reductant on their SERS efficiency,the AgNPs were in-situ synthesized through reducing Ag~+ions dissolved in the polymer solution by ultraviolet irradiation.The prepared hybrid nanofibrous membrane with high stability in aqueous medium can reach its swelling or deswelling equilibrium state within 15 seconds with the medium temperature changing between 25℃and 50℃alternately.When it was used as a free-standing SERS substrate,10~(-12) mol/L of 4-nitrothiophenol in aqueous solution can be detected at room temperature,and elevating detection temperature can further lower its low detection limit.Since its generated SERS signal has desirable reproducibility,it can be used as SERS substrate for quantitative analysis.Moreover,the hybrid membrane as SERS substrate is capable of real-time monitoring the reduction of 4-nitrothiophenol into 4-aminothiophenol catalyzed by its embedded AgNPs,and the detected intermediate indicates that the reaction proceeds via a condensation route.  相似文献   

2.
Sensitive detection of molecules by using the surface‐enhanced Raman scattering (SERS) technique depends on the nanostructured metallic substrate and many efforts have been devoted to the preparation of SERS substrates with high sensitivity, stability, and reproducibility. Herein, we report on the fabrication of stable monolithic nanoporous silver (NPS) by chemical dealloying of Ag–Al precursor alloys with an emphasis on the effect of structural evolution on SERS signals. It was found that the dealloying conditions had great influence on the morphology (the ligament/pore size) and the crystallization status, which determined the SERS signal of rhodamine 6G on the NPS. NPS with small pores, low residual Al, and perfect crystallization gave high SERS signals. A high enhancement factor of 7.5×105 was observed on bare NPS obtained by dealloying Ag30Al70 in 2.5 wt % HCl at room temperature followed by 15 min aging at around 85 °C. After coating Ag nanoparticles on the NPS surface, the enhancement factor increased to 1.6×108 owing to strong near‐field coupling between the ligaments and nanoparticles.  相似文献   

3.
钮洋  刘清海  杨娟  高东亮  秦校军  罗达  张振宇  李彦 《化学学报》2012,70(14):1533-1537
合成了碳纳米管和金纳米颗粒的复合物, 测量了水溶液相中复合物的表面增强拉曼光谱, 结果表明, 碳纳米管的巯基化修饰可以提高碳纳米管与金纳米颗粒复合的效率, 随着金纳米颗粒负载量的增加, 碳纳米管的拉曼信号逐渐增强. 加入己二胺分子可以减小金纳米颗粒之间的距离使表面增强效应更显著, 碳纳米管的拉曼光谱得到进一步的增强. 还可进一步在复合体系中加入对巯基苯胺和罗丹明B等小分子拉曼探针, 利用金纳米颗粒的表面增强效应, 这种多元复合体系有望作为多通道拉曼成像探针材料.  相似文献   

4.
We report herein a method for the ultra‐trace detection of TNT on p‐aminothiophenol‐functionalized silver nanoparticles coated on silver molybdate nanowires based on surface‐enhanced Raman scattering (SERS). The method relies on π‐donor–acceptor interactions between the π‐acceptor TNT and the π‐donor p,p′‐dimercaptoazobenzene (DMAB), with the latter serving to cross‐link the silver nanoparticles deposited on the silver molybdate nanowires. This system presents optimal imprint molecule contours, with the DMAB forming imprint molecule sites that constitute SERS “hot spots”. Anchoring of the TNT analyte at these sites leads to a pronounced intensification of its Raman emission. We demonstrate that TNT concentrations as low as 10?12 M can be accurately detected using the described SERS assay. Most impressively, acting as a new type of SERS substrate, the silver/silver molybdate nanowires complex can yield new silver nanoparticles during the detection process, which makes the Raman signals very stable. A detailed mechanism for the observed SERS intensity change is discussed. Our experiments show that TNT can be detected quickly and accurately with ultra‐high sensitivity, selectivity, reusability, and stability. The results reported herein may not only lead to many applications in SERS techniques, but might also form the basis of a new concept for a molecular imprinting strategy.  相似文献   

5.
A one-step homogenous sensitive immunoassay using surface-enhanced Raman scattering (SERS) has been developed. This strategy is based on the aggregation of Raman reporter-labeled immunogold nanoparticles induced by the immunoreaction with corresponding antigens. The aggregation of gold nanoparticles results in a SERS signal increase of the Raman reporter. Therefore, human IgG could be directly determined by measuring the Raman signal of the reporter. The process of aggregation was investigated by transmission electron microscopy (TEM) and UV-Vis absorption spectroscopy. The effects of the temperature, time, and size of gold nanoparticles on the sensitivity of the assay were examined. Using human IgG as a model protein, a wide linear dynamic range (0.1-15 microg mL(-1)) was reached with low detection limit (0.1 microg mL(-1)) under optimized assay conditions. The successful test suggests that the application of the proposed method holds promising potential for simple, fast detection of proteins in the fields of molecular biology and clinical diagnostics.  相似文献   

6.
《中国化学快报》2022,33(12):5169-5173
Although surface-enhanced Raman spectroscopy (SERS) has been applied for gathering fingerprint information, even in single molecule analysis, the decayed Raman signals in aqueous solutions largely obstruct the on-site insight reaction process. In this study, large-scaled semiconductor films with multi-walled (TiO2/WO3/TiO2) nanopore distribution are fabricated by combining electrochemical anodization and sputtering technique, and then employed as the SERS substrates for detection of molecules at the solid/liquid interfaces. Given the remarkably improved electrochromic property of the multi-walled film, such SERS substrates were endowed with tunable oxygen vacancy (VO) density and distribution via simply applying electrochemical bias voltage, which enabled one to achieve an enhanced charge transfer efficiency and thus a remarkably increased Raman signal even in solution. The VO-rich SERS substrate is highly repeatable, thus providing a reliable platform for in-situ monitoring of the target molecules or intermediates at the solid/liquid interfaces.  相似文献   

7.
Aggregation of gold nanoparticles of increasing size has been studied as a consequence of adsorption of 2-aminothiophenol (ATP) on gold nanoparticle surfaces. The capping property of ATP in the acidic pH range has been accounted from UV-vis absorption spectroscopy and surface-enhanced Raman scattering (SERS) studies. The effect of nanoparticle size (8-55 nm) on the nature of aggregation as well as the variation in the optical response due to variable degree of interparticle coupling effects among the gold particles have been critically examined. Various techniques such as transmission electron microscopy, X-ray diffraction, zeta-potential, and average particle size measurement were undertaken to characterize the nanoparticle aggregates. The aggregate size, interparticle distances, and absorption band wavelengths were found to be highly dependent on the pH of the medium and the concentration of the capping agent, ATP. The acquired SERS spectra of ATP relate the interparticle spacing. It has been observed that the SERS signal intensities are different for different sized gold nanoparticles.  相似文献   

8.
Microextraction by packed sorbents (MEPS) combined with Surface-enhanced Raman spectroscopy (SERS) was investigated, and applied to the determination of musk ketone (MK) in river water samples. The full MEPS–SERS method includes analyte enrichment by MEPS preconcentration with C18 sorbent followed by SERS detection supported by silver nanoparticles. An eluent drop containing the analyte is deposited directly from the MEPS syringe on a CaF2 glass plate. When the drop has dried, a specific volume of silver nanoparticles solution is added on it before each SERS measurement. Several experimental variables were studied in depth; under the optimum experimental conditions MK can be extracted from a 500 μL sample with recoveries in the range 47–63 %. The limit of detection was 0.02 mg L?1 and the relative standard deviation 15.2 % (n?=?4). Although not investigated in this work, the proposed method might be suitable for in-situ monitoring, because of the portability of the Raman spectrometer used.
Figure
Experimental scheme of the MEPS-SERS method proposed for the determination of musk ketone in river water  相似文献   

9.
The cellular response to nanoparticle exposure is essential in various contexts, especially in nanotoxicity and nanomedicine. Here, 14-nm gold nanoparticles in 3T3 fibroblast cells are investigated in a series of pulse-chase experiments with a 30-min incubation pulse and chase times ranging from 15 min to 48 h. The gold nanoparticles and their aggregates are quantified inside the cellular ultrastructure by laser ablation inductively coupled plasma mass spectrometry micromapping and evaluated regarding the surface-enhanced Raman scattering (SERS) signals. In this way, both information about their localization at the micrometre scale and their molecular nanoenvironment, respectively, is obtained and can be related. Thus, the nanoparticle pathway from endocytotic uptake, intracellular processing, to cell division can be followed. It is shown that the ability of the intracellular nanoparticles and their accumulations and aggregates to support high SERS signals is neither directly related to nanoparticle amount nor to high local nanoparticle densities. The SERS data indicate that aggregate geometry and interparticle distances in the cell must change in the course of endosomal maturation and play a critical role for a specific gold nanoparticle type in order to act as efficient SERS nanoprobe. This finding is supported by TEM images, showing only a minor portion of aggregates that present small interparticle spacing. The SERS spectra obtained after different chase times show a changing composition and/or structure of the biomolecule corona of the gold nanoparticles as a consequence of endosomal processing.  相似文献   

10.
Fundamental understanding about the thermal stability of nanoparticles and deliberate control of structural and morphological changes under reactive conditions is of general importance for a wide range of reaction processes in heterogeneous and electrochemical catalysis. Herein, we present a parametric study of the thermal stability of carbon‐supported Pt nanoparticles at 80 °C and 160 °C, with an initial particle size below 3 nm, using in situ high‐temperature X‐ray diffraction (HT‐XRD). The effects on the thermal stability of carbon‐supported Pt nanoparticles are investigated with control parameters such as Brunauer–Emmet–Teller (BET) surface area, metal loading, temperature, and gas environment. We demonstrate that the growth rate exhibits a complex, nonlinear behavior and is largely controlled by the temperature, the initial particle size, and the interparticle distance. In addition, an ex situ transmission electron microscopy study was performed to verify our results obtained from the in situ HT‐XRD study.  相似文献   

11.
利用种子介导的软模板生长方法制备了金纳米线(Au NWs)阵列, 通过调节生长温度控制Au NWs阵列的形貌, 最后在经硼氢化钠(NaBH4)清洗过的Au NWs阵列上化学沉积银纳米颗粒(Ag NPs), 制得银/金纳米线(Ag/Au NWs)阵列作为表面增强拉曼散射(SERS)基底. 选用罗丹明6G(R6G)作为拉曼探针分子测定了Ag/Au NWs阵列的SERS性能. 结果表明, Ag/Au NWs阵列作为SERS基底具有高灵敏度、 优异的信号均匀性和良好的稳定性. 使用Ag/Au NWs阵列对孔雀石绿(MG)检测的检出限可低至1×10-8 mol/L, 线性范围为 1×10-8~1×10-4 mol/L. NaBH4可以在不影响SERS性能的情况下去除Ag/Au NWs阵列上吸附的分子, 使得 SERS基底可以重复使用. 使用Ag/Au NWs阵列对湖水中的MG进行检测, 得到了可靠的回收率, 证明Ag/Au NWs 阵列在检测环境水体中的孔雀石绿上具有应用潜力.  相似文献   

12.
In the investigation of chemical pollutants, such as PAHs (Polycyclic Aromatic Hydrocarbons) at low concentration in aqueous medium, Surface-Enhanced Raman Scattering (SERS) stands for an alternative to the inherent low cross-section of normal Raman scattering. Indeed, SERS is a very sensitive spectroscopic technique due to the excitation of the surface plasmon modes of the nanostructured metallic film. The surface of quartz substrates was coated with a hydrophobic film obtained by silanization and subsequently reacted with polystyrene (PS) beads coated with gold nanoparticles. The hydrophobic surface of the SERS substrates pre-concentrates non-polar molecules such as naphthalene. Under laser excitation, the SERS-active substrates allow the detection and the identification of the target molecules localized close to the gold nanoparticles. The morphology of the SERS substrates based on polystyrene beads surrounded by gold nanoparticles was characterized by scanning electron microscopy (SEM). Furthermore, the Raman fingerprint of the polystyrene stands for an internal spectral reference. To this extent, an innovative method to detect and to quantify organic molecules, as naphthalene in the range of 1 to 20 ppm, in aqueous media was carried out. Such SERS-active substrates tend towards an application as quantitative SERS sensors for the environmental analysis of naphthalene.  相似文献   

13.
该文利用一步法快速制备银溶胶,实现了基底的现用现制.对嗜麦芽窄食单胞菌进行表面增强拉曼散射(SERS)检测,得到18组拉曼特征峰的生物指纹谱图.方法能够检测到的最低菌悬液浓度为5 x106菌落形成单位(CFU)/mL,重现性的相对标准偏差为6.8%-16%,满足生物医学领域定性分析的基本要求.采用该方法获得的阳性病人血...  相似文献   

14.
Humic acid (HA) solutions provide an unexpected medium for direct fabrication of gold nanoparticles (HA-AuNP) and a clear window for surface-enhanced Raman scattering (SERS) with many potential applications in the ultrasensitive chemical analysis of environmental pollutants. It is demonstrated that the HA-AuNP fabrication can be easily achieved in a wide range of pH (2 to 12). The background SERS spectra of HA is relatively weak in absolute intensity, allowing the detection of the enhanced Raman signal from trace amount of contaminants. An in-situ approach is illustrated where the HA-AuNP fabrication is carried out with a HA solution containing the target pollutant. The technique may allow for the direct detection of organic pollutants present in the humic fraction of soil.  相似文献   

15.
Assembly of gold nanoparticles mediated by multifunctional fullerenes   总被引:1,自引:0,他引:1  
The understanding of the interparticle interactions of nanocomposite structures assembled using molecularly capped metal nanoparticles and macromolecular mediators as building blocks is essential for exploring the fine-tunable interparticle spatial and macromolecular properties. This paper reports the results of an investigation of the chemically tunable multifunctional interactions between fullerenes (1-(4-methyl)-piperazinyl fullerene, MPF) and gold nanoparticles. The interparticle spatial properties are defined by the macromolecular and multifunctional electrostatic interactions between the negatively charged nanoparticles and the positively charged fullerenes. In addition to characterization of the morphological properties, the surface plasmon resonance band, dynamic light scattering, and surface-enhanced Raman scattering (SERS) properties of the MPF-mediated assembly and disassembly processes have been determined. The change of the optical properties depends on the pH and electrolyte concentrations. The detection of the Raman-active vibration modes (Ag(2) and Hg(8)) of C60 and the determination of their particle size dependence have demonstrated that the adsorption of MPF on the nanoparticle surface in the MPF-Au nm assembly is responsible for the SERS effect. These findings provide new insights into the delineation between the interparticle interactions and the nanostructural properties for potential applications of the nanocomposite materials in spectroscopic and optical sensors and in controlled releases.  相似文献   

16.
The identification and discrimination of microorganisms is important not only for clinical reasons but also for pharmaceutical clean room production and food-processing technology. Vibrational spectroscopy such as IR, Raman, and surface-enhanced Raman scattering (SERS) can provide a rapid ‘fingerprint’ on the chemical structure of molecules and is used to obtain a ‘fingerprint’ from microorganisms as well. Because of the requirement that a single bacterium cell and noble metal nanoparticles must be in close contact and the lack of a significant physical support to hold nanoparticles around the single bacterium cell, the acquisition of SERS spectra for a single bacterium using colloidal nanoparticles could be a challenging task. The feasibility of SERS for identification down to a single bacterium is investigated. A Gram-negative bacterium, Escherichia coli, is chosen as a model for the investigation. Because the adsorption of silver nanoparticles onto the bacterial cell is an exclusive way for locating nanoparticles close to the bacterium cell, the absorption characteristics of silver nanoparticles with different surface charges are investigated. It is demonstrated that the citrate-reduced colloidal silver solution generates more reproducible SERS spectra. It is found that E. coli cells aggregate upon mixing with silver colloidal solution, and this may provide an additional benefit in locating the bacterial cell under a light microscope. It is also found that a laser wavelength in the UV region could be a better choice for the study due to the shallow penetration depth. It is finally shown that it is possible to obtain SERS spectra from a single cell down to a few bacterial cells, depending on the aggregation properties of bacterial cells for identification and discrimination.  相似文献   

17.
Oligonucleotide-modified nanoparticle conjugates show highly promising potential for SERS-based DNA detection. However, it remains challenging to carry out the SERS-based DNA detection in aqueous solutions directly using oligonucleotide-modified nanoparticles, because the Raman reporters would exhibit lower signals when they are dispersed in aqueous solutions than laid on “dry” metal nanoparticles. Here, we synthesized stable oligonucleotide-modified Ag nanoprism conjugates, and performed SERS-based DNA detection in aqueous solution directly by using such conjugates in combination with Raman reporter-labeled, oligonucleotide-modified gold nanoparticles. The experimental results indicate that this SERS-based DNA detection approach exhibited a good linear correlation between SERS signal intensity and the logarithm of target DNA concentration ranging from 10?11~10?8 M. This sensitivity is comparable to those SERS-based DNA detection approaches with the “dry” process. Additionally, a similar correlation could also be observed in duplex target DNA detection by SERS hybrid probes. Our results suggest that the oligonucleotide-modified Ag nanoprisms may be developed as a powerful SERS-based DNA detection tool.
Scheme of SERS-based DNA detection in aqueous solutions. Capture DNA-modified Ag nanoprisms and Raman reporter-labeled, report DNA-modified gold nanoparticles are utilized in the detection  相似文献   

18.
We have developed a novel technique to precisely determine the Raman enhancement factor in single nanoplasmonic resonators (TNPRs). TNPRs are lithographically defined metallodielectric nanoparticles composed of two silver disks stacked vertically, separated by a silica layer. At resonance, the local electromagnetic fields are enhanced at the TNPR surface, making it an ideal surface-enhanced Raman scattering (SERS) active substrate. The ability to control the dimensions of the metallic and dielectric layers offers the unique advantage of fine-tuning the plasmon resonance frequency to maximize the enhancement of the Raman signal. Furthermore, by selective shielding of the outer surface of the metallic structure, the efficiency can be further enhanced by guiding the molecular assembly to the locations that exhibit strong electromagnetic fields. We experimentally demonstrate SERS enhancement factors of (6.1+/-0.3)x10(10), with the highest enhancement factor being achieved by using an individual nanoparticle. By using nanofabrication techniques, we eliminate the issues such as large size variations, cluster aggregation, and interparticle effects common in preparing SERS substrates using conventional chemical synthesis or batch fabrication methods. TNPRs produce very controllable and repeatable SERS signals at the desired locations and, thus, make an ideal candidate for device integration.  相似文献   

19.
The authors describe a Surface enhanced Raman spectroscopy (SERS)-based method for the detection of gaseous toluene at different temperature regimes using 3D ruffled silver SERS substrates and a commercially available handheld Raman system equipped with a 785 nm laser. The 3D silver SERS substrates were synthesized via electroless deposition of silver on the ruffled sandpaper and HF-etched silicon wafers. The morphological characterization of the silver SERS substrates was carried out by atomic force microscopy and scanning electron microscopy. UV-Vis spectroscopy absorption spectra of the silver nanostructures showed plasmonic peaks at 522 nm and 731 nm. Toluene vapors were collected with a syringe at ambient temperature and at 100 °C, while SERS detection was always performed at room temperature. Toluene detection was based on the measurement of the Raman bands at 787 cm?1 and 1003 cm?1 (in the fingerprint region). The method allow gaseous toluene to be detected at its vapor concentrations of 522 ppm (mg/L), 261 ppm (mg/L) and 26 ppm (mg/L).
Graphical abstract Schematic presentation of an original method for the detection of toluene vapors by SERS technique. The collection of toluene vapors was carried out at room and at high temperatures. The vapors were transferred to methanol by bubbling. The SERS measurements were carried out at room temperature.
  相似文献   

20.
With the assistance of Polyvinylpyrrolidone (PVP), AgCl/Ag composites were fabricated in N, N-Dimethylformamide (DMF) solvent via a photoactivated route. The size of AgCl particles was in the range of 500 nm to 1 μm and the Ag particle's diameter was about 10–20 nm. Different from those core–shell structures reported before, the Ag nanoparticles were dispersed uniformly both on the surface and in the body of AgCl particles. The generation of such kind of composites was resulted from the reducing ability of DMF and light irradiation during the formation of AgCl particles. The as-obtained AgCl/Ag composites presented great activity for both surface-enhanced Raman scattering (SERS) detection and visible light photocatalytic degradation of organic dyes. Additionally, the AgCl/Ag composites could maintain high photocatalytic activity even though the ambient temperature was as low as 15 °C and recycle photocatalysis experiments indicated that the photocatalyst exhibited higher stability. Such kind of AgCl/Ag composites holds great potential for environmental monitoring devices and pollutant treatments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号