首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The phase separation and rapid solidification of liquid ternary Co45Cu42Pb13 immiscible alloy have been investigated under both bulk undercooling and containerless processing conditions. The undercooled bulk alloy is solidified as a vertical two-layer structure, whereas the containerlessly solidified alloy droplet is characterized by core-shell structures. The dendritic growth velocity of primary α(Co) phase shows a power-law relation to undercooling and achieves a maximum of 1.52 m/s at the undercooling of 112 K. The Pb content is always enriched in Cu-rich zone and depleted in Co-rich zone. Numerical analyses indicate that the Stokes motion, solutal Marangoni convection, thermal Marangoni convection, and interfacial energy play the main roles in the correlated process of macrosegregation evolution and microstructure formation.  相似文献   

2.
闫娜  王伟丽  代富平  魏炳波 《物理学报》2011,60(3):36402-036402
在自由落体条件下实现了三元Co-Cu-Pb合金的液相分离与快速凝固. 实验发现,随液滴直径减小,Co51Cu47Pb2合金液滴发生由枝晶→两层壳核→枝晶组织的转变,Co47Cu44Pb9合金液滴的组织形态由壳核组织演化为均匀组织. 两种合金的快速凝固组织均由α(Co),(Cu)和(Pb)固溶体三相组成,α(Co)和(Cu)相主要以枝晶方式生长,(Pb)相分布在(Cu)枝晶间. 关键词: 液相分离 偏晶合金 快速凝固 自由落体  相似文献   

3.
曹崇德 《中国物理》2006,15(4):872-877
The metastable liquid phase separation and rapid solidification behaviours of Co61.8Cu38.2 alloy were investigated by using differential thermal analysis (DTA) in combination with glass fluxing, electromagnetic levitation (EML) and drop tube techniques. It is found that the liquid phase separation process and the solidification microstructures intensively depend on the experimental processing parameters, such as undercooling level, cooling rate, gravity level, liquid surface tension and the wetting state of crucible. Large undercooling and surface tension difference of the two liquids tend to facilitate further separation and cause severe macrosegregation. On the other hand, rapid cooling and low gravity effectively suppress the coalescence of the minority phase. Severe macrosegregation patterns are formed in the bulk samples processed by both DTA and EML. In contrast, disperse structures with fine spherical Cu-rich spheres homogeneously distributed in the matrix of Co-rich phase have been obtained in drop tube.  相似文献   

4.
林茂杰  常健  吴宇昊  徐山森  魏炳波 《物理学报》2017,66(13):136401-136401
基于轴对称电磁悬浮模型,理论计算了二元Fe_(50)Cu_(50)合金熔体内部的磁感应强度和感应电流,分析了其时均洛伦兹力分布特征,进一步耦合Navier-Stokes方程组计算求解了合金熔体内部流场分布规律.计算结果表明,电磁悬浮状态下合金内部流场呈现环形管状分布,并且电流强度、电流频率或合金过冷度的增加,均会导致熔体内部流动速率峰值减小,平均流动速率增大,并使流动速率大于100 mm·s~(-1)区域显著增大.通过与静态凝固实验对比发现,电磁悬浮条件下熔体中强制对流使得合金内部富Fe和富Cu区的相界面呈波浪状起伏形貌,并且富Cu相颗粒在熔体上部分出现的概率增加.  相似文献   

5.
臧渡洋  王海鹏  魏炳波 《物理学报》2007,56(8):4804-4809
研究了深过冷条件下三元Ni80Cu10Co10合金的快速枝晶生长, 采用电磁悬浮无容器处理方法获得了335 K(0.2TL)的最大过冷度. X射线衍射分析与差示扫描量热分析均表明,凝固组织为α-Ni单相固溶体. 随过冷度增大, 凝固组织显著细化, 并且当过冷度达110 K时,凝固组织的形态由粗大形枝晶转变为等轴晶. 深过冷条件下溶质截留效应增强, 使得微观偏析程度减小. 对不同过冷度下合金枝晶的生长速度进 关键词: 深过冷 枝晶生长 快速凝固 溶质截留  相似文献   

6.
The resistivity behavior of undercooled liquid Cu–Ni and Cu–Co alloys had been studied in the contactless method, to probe the structure transition in undercooled melts during the cooling process. Over the entire concentration range, linear behavior of resistivity with temperature was obtained in liquid and undercooled liquid Cu–Ni system. It implied that the formation of icosahedral order might not influence the electron scattering in undercooled liquid Cu–Ni alloys. Similar results were obtained in Cu–Co system in the vicinity of liquidus temperature. A turning point was obvious in temperature coefficient of resistivity for undercooled liquid Cu–Co alloys around the bimodal line, which was interpreted to be responsible for metastable liquid–liquid phase separation. During liquid phase separation process, resistivity decreased and the temperature coefficient of resistivity was larger than that of homogeneous melts. In combination with transmission electron microscopy and scanning electron microscope studies on the as-solidified microstructure, this was interpreted as the formation of egg-type structure and concentration change in Cu-rich and Co-rich phases. The mechanism controlling the separation and droplets motion was also discussed in undercooled liquid Cu–Co system.  相似文献   

7.
快速凝固Co-Cu包晶合金的电学性能   总被引:2,自引:2,他引:0       下载免费PDF全文
徐锦锋  魏炳波 《物理学报》2005,54(7):3444-3450
研究了Co-Cu包晶合金快速凝固过程中的相选择和组织形成特征, 探索了冷却速率、组织结构和晶体位向与合金电阻率之间的相关规律.实验发现, 快速凝固可使Co在(Cu)中的固溶度扩展至20%.Cu含量大于80%时, L+αCo→(Cu)包晶转变被抑制, (Cu)可从过冷熔体中直接形核析出.Cu含量在40%—70%范围时, Co-Cu合金的液相分离受到抑制, 凝固组织沿条带厚度方向分为两个晶区.细晶区中αCo和(Cu)相竞争形核并生长, αCo枝晶形态细密,细小的(Cu)等轴晶均匀分布于αCo的基体之中.粗晶区αCo相为领先相, 富Cu相分布于αCo枝晶的晶界处.随着冷速的增大, 合金组织显著细化, 晶界增多,对自由电子的散射作用增强, 合金电阻率显著增大.当晶界散射系数r=0996—0999时, 可采用M-S模型综合分析快速凝固Co-Cu合金的电阻率. 关键词: 电阻率 快速凝固 相结构 晶体生长  相似文献   

8.
沙莎  王伟丽  吴宇昊  魏炳波 《物理学报》2018,67(4):46402-046402
采用电磁悬浮和自由落体两种实验技术对二元Co-50%Mo过共晶合金中初生Co_7Mo_6金属间化合物的生长机理和维氏硬度进行了系统研究.电磁悬浮实验中,合金熔体获得的最大过冷度为203 K(0.12T_L),初生Co_7Mo_6枝晶生长速度与过冷度之间呈现幂函数关系.随着过冷度的增大,初生枝晶中Co元素含量单调递增,枝晶尺寸明显减小,并且其维氏硬度逐渐升高.在自由落体状态下,随着液滴直径的减小,合金熔体的过冷度和冷却速率均增大.当液滴直径减小到392μm以下时,初生Co_7Mo_6枝晶从小平面向非小平面形态进行转变.实验发现,深过冷条件下Co_7Mo_6化合物发生了显著的溶质截留效应,其维氏硬度与Co元素分布和形貌特征密切相关.  相似文献   

9.
The metastable liquid phase separation and rapid solidification of Cu60Fe30Co10 ternary peritectic alloy were investigated by using the drop tube technique and the differential scanning calorimetry method. It was found that the critical temperature of metastable liquid phase separation in this alloy is 1623.5 K, and the two separated liquid phases solidify as Cu(Fe,Co) and Fe(Cu,Co) solid solutions, respectively. The undercooling and cooling rate of droplets processed in the drop tube increase with the decrease of their diameters. During the drop tube processing, the structural morphologies of undercooled droplets are strongly dependent on the cooling rate. With the increase of the cooling rate, Fe(Cu,Co) spheres are refined greatly and become uniformly dispersed in the Cu-rich matrix. The calculations of Marangoni migration velocity (V M) and Stokes motion velocity (V S) of Fe(Cu,Co) droplets indicated that Marangoni migration contributes more to the coarsening and congregation of the minor phase during free fall. At the same undercooling, the V M/V S ratio increases drastically as Fe(Cu,Co) droplet size decreases. On the other hand, a larger undercooling tends to increase the V M/V S value for Fe(Cu,Co) droplets with the same size. Supported by the National Natural Science Foundation of China (Grant Nos. 50121101 and 50395105) and the Scientific and Technological Creative Foundation of Youth in Northwestern Polytechnical University of China (Grant No. W016223)  相似文献   

10.
姚文静  魏炳波 《中国物理》2003,12(11):1272-1282
The Co-12%Si hypoeutectic, Co-12.52%Si eutectic and Co-13%Si hypereutectic alloys are rapidly solidified in a containerless environment in a drop tube. Undercoolings up to 207K (0.14T_E) are obtained, which play a dominant role in dendritic and eutectic growth. The coupled zone around Co-12.52%Si eutectic alloy has been calculated, which covers a composition range from 11.6 to 12.7%Si. A microstructural transition from lamellar eutectic to divorced eutectic occurs to Co-12.52%Si eutectic droplets with increasing undercooling. The lamellar eutectic structure of the Co-12.52%Si alloy consists of εCo and Co_3Si phases at small undercooling. The Co_3Si phase cannot decompose completely into εCo and αCo_2Si phases. As undercooling becomes larger, the Co_3Si phase grows very rapidly from the highly undercooled alloy melt to form a divorced eutectic. The structural morphology of the Co-12%Si alloy droplets transforms from εCo primary phase plus lamellar eutectic to anomalous eutectic, whereas the microstructure of Co-13%Si alloy droplets experiences a `dendritic to equiaxed' structural transition. No matter how large the undercooling is, the εCo solid solution is the primary nucleation phase. In the highly undercooled alloy melts, the growth of εCo and Co_3Si phases is controlled by solutal diffusion.  相似文献   

11.
We report a solidification mechanism transition of liquid ternary Co45Cu45Ni10 alloy when it solidifies at a critical undercooling of about 344 K. When undercooling at ΔT<344 K, the solidification process is characterized by primary S (Co) dendritic growth and a subsequent peritectic transition. The dendritic growth velocity of S (Co) dendrite increases with the rise of undercooling. However, once ΔT>344 K, the solidification velocity decreases with the increase of undercooling. In this case, liquid/liquid phase separation takes place prior to solidification. The minor L2 (Cu) droplets hinder the motion of the solidification front, and a monotectic transition may occur in the major L1 phase. These facts caused by metastable phase separation are responsible for the slow growth at high undercoolings.  相似文献   

12.
The metastable liquid phase separation and rapid solidification behaviors of Co_(40) Fe_(40) Cu_(20) alloy were investigated by using differential thermal analysis(DTA) in combination with glass fluxing and electromagnetic levitation(EML) techniques. The critical liquid phase separation undercooling for this alloy was determined by DTA to be 174 K. Macrosegregation morphologies are formed in the bulk samples processed by both DTA and EML. It is revealed that undercooling level, cooling rate, convection, and surface tension difference between the two separated phases play a dominant role in the coalescence and segregation of the separated phases. The growth velocity of the(Fe,Co) dendrite has been measured as a function of undercooling up to 275 K. The temperature rise resulting from recalescence increases linearly with the increase of undercooling because of the enhancement of recalescence. The slope change of the recalescence temperature rise versus undercooling at the critical undercooling also implies the occurrence of liquid demixing.  相似文献   

13.
(Fe50Co25B15Si10)80Cu20 ribbons are prepared by using the single-roller melt-spinning method.A dual-layer structure consisting of a(Fe,Co)-rich amorphous phase and a Cu-rich crystalline phase forms due to metastable liquid phase separation before solidification.The magnetic hysteresis loops of the as-quenched and annealed samples are measured at room temperature.It is indicated that the coercivity of the ribbon is almost zero in the as-quenched state.The crystallization leads to the increase of coercivity and decrease of saturation magnetization.  相似文献   

14.
Direct evidence of phase separation in the Co-rich corner of the Co–Cr binary system, the transformation of high-temperature FCC α-Co into a ferromagnetic αf phase and a paramagnetic αp phase, has been experimentally obtained by using diffusion couple technique, scanning electron microscopy with energy dispersion analysis of X-ray (SEM-EDX), analytical transmission electron microscopy, optical microscopy and X-ray diffraction. Thermodynamic calculation, on the basis of the presently obtained phase equilibrium data, has verified that this phase separation arises from magnetic ordering, and that a similar phase separation appears in the HCP phase below 469°C which is transformed into a ferromagnetic εf phase and a paramagnetic εp phase. It is therefore concluded that magnetically induced phase separation must be responsible for the microscopic composition modulation of Cr in the CoCr thin film magnetic recording media.  相似文献   

15.
杨尚京  王伟丽  魏炳波 《物理学报》2015,64(5):56401-056401
在自由落体条件下实现了液态Al-4 wt.%Ni亚共晶、Al-5.69 wt.%Ni共晶和Al-8 wt.%Ni过共晶合金的深过冷与快速凝固. 计算表明, (Al+Al3Ni)规则纤维状共晶的共生区是4.8–15 wt.%Ni成分范围内不闭合区域, 且强烈偏向Al3Ni相一侧. 实验发现, 随液滴直径的减小, 合金熔体冷却速率和过冷度增大, (Al)和Al3Ni相枝晶与其共晶的竞争生长引发了Al-Ni 共晶型合金微观组织演化. 在快速凝固过程中, Al-4 wt.%Ni亚共晶合金发生完全溶质截留效应, 从而形成亚稳单相固溶体. 当过冷度超过58K时, Al-5.69 wt.%Ni 共晶合金呈现从纤维状共晶向初生(Al) 枝晶为主的亚共晶组织演变. 若过冷度连续增大, Al-8 wt.%Ni过共晶合金可以形成全部纤维状共晶组织, 并且最终演变为粒状共晶.  相似文献   

16.
Qingdong Liu 《哲学杂志》2013,93(27):2361-2374
Abstract

The hierarchical distribution of Cu-rich precipitates (CRPs) and related partitioning and segregation behaviours of solute atoms were investigated in a 1.54 Cu-3.51 Ni (wt.%) low-carbon high-strength low-alloy (HSLA) steel after multistage heat treatment by using the combination of electron backscatter diffraction (EBSD), transmission electron microscopy (TEM) and atom probe tomography (APT). Intercritical tempering at 725 °C of as-quenched lathlike martensitic structure leads to the coprecipitation of CRPs at the periphery of a carbide precipitate which is possibly in its paraequilibrium state due to distinct solute segregation at the interface. The alloyed carbide and CRPs provide constituent elements for each other and make the coprecipitation thermodynamically favourable. Meanwhile, austenite reversion occurs to form fresh secondary martensite (FSM) zone where is rich in Cu and pertinent Ni and Mn atoms, which gives rise to a different distributional morphology of CRPs with large size and high density. In addition, conventional tempering at 500 °C leads to the formation of nanoscale Cu-rich clusters in α-Fe matrix. As a consequence, three populations of CRPs are hierarchically formed around carbide precipitate, at FSM zone and in α-Fe matrix. The formation of different precipitated features can be turned by controlling diffusion pathways of related solute atoms and further to tailor mechanical properties via proper multistage heat treatments.  相似文献   

17.
M. Li  S. Yoda  K. Kuribayashi 《哲学杂志》2013,93(23):2581-2591
The interface undercooling in classical eutectic growth theories consists of solute and curvature undercooling with different expression formats. However, a significant difference in interface kinetic coefficients arises for a disordered non-facetted solid solution and an ordered facetted intermetallic compound in that different growth kinetics govern the attachment kinetics at the solid–liquid interface, which correspond to a typical eutectic reaction with a solid solution and an intermetallic compound as its terminal eutectic phases. Following the pioneering work of Jackson and Hunt (Trans. Metall. Soc. AIME 236 1129 (1966) ), the kinetic undercooling is supplemented to interface undercooling and two eutectic phases are considered separately so as to diagnose the effect of the asymmetrical contribution of kinetic undercooling on the coupled eutectic growth behaviour. Further analysis indicates that it is the asymmetrical contribution of kinetic undercoolings of the facetted and non-facetted phases that enables the coupled eutectic composition shift to the facetted phase side so as to weaken the solute undercooling of the facetted phase and balance the kinetic contribution in the rapid solidification of coupled eutectics.  相似文献   

18.
Rapid solidification of binary Cu-22%Sn peritectic alloys and Cu-5%Sn-5%Ni-5%Ag quaternary alloys was accomplished by glass fluxing, drop tube and melt spinning methods. The undercooled, by glass fluxing method, Cu-22%Sn peritectic alloy was composed of α(Cu) and δ(Cu41Sn11) phases. If rapidly solidified in a drop tube, the alloy phase constitution changed from α(Cu) and δ(Cu41Sn11) phases into a single supersaturated (Cu) phase with the reducing of droplet diameter, and the maximum solubility of Sn in (Cu)...  相似文献   

19.
Bulk samples and small droplets of liquid Fe-10%Sb alloys are undercooled up to 429 K (0.24TL) and 568 K (0.32TL), respectively, with glass fluxing and free fall techniques. The high undercooling does not change the phase constitution, and only the αFe solid solution is found in the rapidly solidified alloy. The experimental results show that when the undercooling is below 296 K, the growth velocity of αFe dendrite rises exponentially with the increase of undercooling and reaches a maximum value 1.38 m/s. S...  相似文献   

20.
李路远  阮莹  魏炳波 《物理学报》2018,67(14):146101-146101
采用落管方法实现了液态三元Fe-Cr-Ni合金的深过冷与快速凝固,合金液滴的冷却速率和过冷度均随液滴直径的减小而迅速增大.两种成分合金近平衡凝固组织均为粗大板条状α相.在快速凝固过程中,不同直径Fe_(81.4)Cr_(13.9)Ni_(4.7)合金液滴凝固组织均为板条状α相,其固态相变特征很明显,随着过冷度增大,初生δ相由具有发达主干的粗大枝晶转变为等轴晶.Fe_(81.4)Cr_(4.7)Ni_(13.9)合金液滴凝固组织由α相晶粒组成,随着过冷度增大,初生γ相由具有发达主干的粗大枝晶转变为等轴晶,其枝晶主干长度和二次分枝间距均显著下降,晶粒内溶质的相对偏析度也明显减小,溶质Ni的相对偏析度始终大于溶质Cr.理论计算表明,与γ相相比,δ相枝晶生长速度更大.在实验获得的过冷度范围内,两种Fe-Cr-Ni合金枝晶生长过程均由热扩散控制.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号