首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Tetrahedron: Asymmetry》1998,9(9):1457-1477
Some recent developments in the use of main chain chiral polymer catalysts are summarized. These polymers are different from the traditional polymer catalysts that are prepared by anchoring monomeric chiral catalysts to an achiral polymer backbone. Three classes of synthetic main chain chiral polymers are discussed including: (1) helical polymers represented by polypeptides; (2) polymers with flexible chiral chains such as polyesters and polyamides; and (3) polymers of rigid and sterically regular chiral chains represented by chiral conjugated polybinaphthyls. Some of these polymer catalysts have shown high enantioselectivity in asymmetric organic transformations.  相似文献   

2.
Immobilized catalysts have been reinvestigated from two aspects; as keys to environmentally benign chemical processes and high-throughput organic synthesis for combinatorial chemistry. While most known polymer-supported catalysts are less active than the corresponding original catalysts, new types of polymer-supported catalysts, microencapsulated catalysts, have been developed. The catalysts were immobilized on to polymers using physical envelopment by polymer backbones and interaction between pi electrons of benzene rings of the polystyrenes used as polymer backbones and vacant orbitals of the catalysts. Microencapsulated Sc, Os, Pd and Ru catalysts have been successfully prepared and high activities have been attained. In all cases, no leaching of the catalysts occurred, and the immobilized catalysts were recovered quantitatively by simple filtration and reused without loss of activity. It is noted that this method enables direct immobilization of metals onto polymers, and that normally unstable species such as Pd(0)(PPh3) can be kept stable by this immobilization technique. It is expected that other metal catalysts can be immobilized using this microencapsulation technique.  相似文献   

3.
为了制备电致偏振光发光材料, 以对苯二乙炔和2,5-二溴苯衍生物为单体,通过Sonogashira偶联反应, 采用不同Pd催化剂, 合成了一种侧基横挂偶极基团的液晶聚苯撑乙炔. 单体的化学结构通过IR, NMR和元素分析等方法得到确证. 聚合物外观为黄色粉状固体, 室温下溶于CHCl3和THF等有机溶剂. 将聚合物加热到各自的玻璃化转变温度以上都能形成液晶态并显示双向液晶性. 考察了不同催化剂对合成的聚合物的分子量、聚合物链中单体单元的结构排列以及液晶性质的影响. 结果表明, 两种不同的Pd催化剂对合成的聚合物的分子量以及液晶态温度范围影响不大, 但对聚合物的立构规整性以及聚合物的液晶态织构有较大的影响. Pd(PPh3)4作催化剂合成的聚合物中单体单元的结构排列较单一, 可以观察到清晰的液晶态织构. 以PdCl2(PPh3)2为催化剂合成的聚合物链中单体单元的结构排列相对复杂, 液晶态织构不明显. 变温X 射线衍射研究证实聚合物均为向列相液晶.  相似文献   

4.
Three of the four possible structures for polymers formed from an achiral monomer through a single ROMP polymerization step have been prepared for a small collection of monomers. Trans,syndiotactic structures have been prepared through chain end control, cis,isotactic polymers have been prepared through enantiomorphic site control, and cis,syndiotactic polymers have been prepared through stereogenic metal control. Stereogenic metal control at the metal center as a means of forming syndiotactic polymers is virtually unknown. Synthesis of ROMP polymers with a regular structure that contain alternating enantiomers from a racemic mixture of monomers is a natural consequence of stereogenic metal control. Ruthenium catalysts do not display ROMP specificities analogous to those described here, perhaps since alkylidene isomers have not been observed for Ru catalysts and the barrier to rotation of the carbene in a generic NHC dichloride Ru catalyst has been calculated to be relatively low.  相似文献   

5.
由于过渡金属催化剂在烯烃聚合方面具有高活性和良好的分子剪裁性,通过调节催化剂的微结构或温度、压力等聚合环境的变化,可以在分子层次上实现烯烃聚合物的分子设计与组装,实现聚合物物理性质的调控,最近引起了人们的广泛关注。本文介绍了过渡金属催化剂的合成及其负载化,水相烯烃聚合及活性聚合等方面的研究进展。  相似文献   

6.
Over the past eight years, early transition metal catalysts for the ring opening metathesis polymerization of cyclic olefins have been developed. These catalysts are simple organometallic complexes containing metal carbon multiple bonds that in most cases polymerize olefins by a living process. These catalysts have been used to prepare a family of near monodispersed and structurally homogeneous polymers. A series of group VIII ROMP catalysts that allow a wide range of functionality to be incorporated into the polymer side chains have recently been prepared. This most important members of this family of complexes are the bisphosphinedihaloruthenium carbene complexes. These catalysts show excellent functional group stability and can be used to prepare well defined telechelic polymers, polyolefins with ordered functionality, and highly functionalized block copolymers.  相似文献   

7.
The polymerization of acetylene and its derivatives by rare earth coordination catalysts and the characterization of the polymers so obtained in our laboratory are reviewed. Because of the metallic conductivity possessed by doped polyacetylene and the unique properties such as conductivity (semiconductivity), paramagnetism, migration and transfer of energy and chemical reactivity and complex formation ability often shown by acetylenic polymers, which seem promising as specialty polymers, there has been considerable interest in the polymers of acetylene and its derivatives. A wide variety of catalyst systems have been developed for the polymerization of acetylenes. But there has been no information concerning the use of rare earth compounds as catalysts in the polymerization of acetylene and its derivatives. We for the first time in 1981 have succeeded in the polymerization of acetylene with rare earth coordination catalysts, which in turn is a development based upon earlier work on the diene polymerization using rare earth coordination catalysts(Ref. 1). Using rare earth catalysts, acetylene can be polymerized conveniently into high cis polyacetylene films with metallic sheen at room temperature and phenylacetylene can also be polymerized into high molecular weight, high cis polyphenylacetylene films at ambient temperature. Thus new varieties of polyacetylenes have been developed and a novel family of coordination catalysts consisting of a rare earth compound plus trialkyl aluminum for the polymerization of acetylenes has been exploited. This article reviews our studies on the polymerization of acetylene and its derivatives with rare earth coordination catalysts and on the characterization of the polyacetylenes prepared.  相似文献   

8.
Bis(arene) complexes of zerovalent titanium, zirconium, and hafnium supported on partially dehydroxylated, fumed alumina are effective catalysts for the polymerization of olefins. The zerovalent complexes react with surface hydroxyls with loss of one equivalent of arene to yield the active species. The polyethylenes derived from these catalysts are very high molecular weight. Polymerization of propylene yields elastomeric stereoblock polymers which are composed of isotactic and stereoirregular sequences. The polymers are stiffer than polypropylenes obtained with similar catalysts derived from tetra(neophyl)zirconium. The chain microstructures of the various components of the whole polymers have been characterized by 13C-NMR and solvent extraction studies. The ether soluble component of these polymers is of a relatively high molecular weight and the microstructure of the backbone is largely stereoirregular. It is the cocrystallization of this fraction of the polymer with the crystalline, isotactic fractions which is critical to the observed elastomeric properties.  相似文献   

9.
Phosphazene-containing porous materials are of a great interest due to their unique properties, caused by the synergetic presence of nitrogen and phosphorus atoms, and have found applications as adsorbents, basic catalysts, etc. On the other hand, cage-like silsesquioxanes are ideal building blocks for the preparation of covalently-linked porous materials. Here two new phosphazene-functionalized organosilsesquioxane cage-based porous polymers were synthesized successively by a Friedel-Crafts reaction of hexapyrrolylcyclotriphosphazene with octavinylsilsesquioxane in the presence of AlCl3 and CF3SO3H as catalysts. The nature of acid catalysts barely influenced the character of pores due to the interaction of catalysts with basic nitrogen atoms of phosphazene units. The obtained polymers exhibited high efficiency as metal-free catalysts for the Knoevenagel reaction. This work opens new perspectives in the use of porous polymers based on cage-like organosiloxane compounds as basic catalysts for various reactions.  相似文献   

10.
随着聚合用稀土催化剂本质的深入研究,不断出现新的催化剂和聚合物,其中一些催化剂已实现工业比生产.本文以稀土催化剂在烯烃、双烯烃和其它单体的聚合物领域中较为突出的主要成就为中心,扼要地介绍稀土催化剂在高分子科学和工业上的最新进展.  相似文献   

11.
The present-day position in the field of polymeric catalysts is outlined. The following selected groups of polymeric catalysts are discussed: synthetic hydrolases, immobilized enzymes, phase-transfer catalysts, nucleophilically active bases, polymers with conjugated π-systems, photosensitizers, polymers as carriers for catalytically active metals or ions, and immobilized homogeneous catalysts. Polymeric catalysts have the following valuable properties: insoluble polymeric catalysts are readily separable from reaction solutions and can often be re-used without loss of activity; a hydrophobic matrix protects the organometallic active center from deactivation by oxygen and water; by fixation of finely divided metals on an ion exchanger, multistage reactions may be effected successively in one reactor. Polymeric carriers may influence the catalytic properties; for example, in the case of immobilized enzymes on polyionic carriers the pH of the activity maximum may be shifted.  相似文献   

12.
The polymerization of acrylic and methacrylic esters of 2-allyphenol with different anionic, cationic and coordination catalysts was studied. The polymerization occurs exclusively or predominantly through (meth)acrylic C?C double bonds in all the studied cases. With anionic catalysts the allylic groups are not polymerizable and the polymers have linear structure. Polymerization with catalysts based on dialkylaluminum chloride (alone or associated with some metal salts) yields soluble or partially crosslinked polymers, depending on the reaction conditions. The crosslinking is due to the participation of allylic groups in the polymerization reactions. Copolymers of acrylic and methacrylic esters of 2-allylphenol with styrene, acrylonitrile, methyl methacrylate, N-vinylcarbazole and 1,3-pentadiene were synthesized by copolymerization in the presence of anionic catalysts and of systems based on dialkylaluminum chloride.  相似文献   

13.
Conjugated microporous polymers (CMPs) are a class of crosslinked polymers that combine permanent micropores with π‐conjugated skeletons and possess three‐dimensional (3D) networks. Compared with conventional materials such as metal–organic frameworks (MOFs) and covalent organic frameworks (COFs), CMPs usually have superior chemical and thermal stability. CMPs have made significant progress in heterogeneous catalysis in the past seven years. With a bottom‐up strategy, catalytic moieties can be directly introduced into in the framework to produce heterogeneous CMP catalysts. Higher activity, stability, and selectivity can be obtained with heterogeneous CMP catalysts in comparison with their homogeneous analogs. In addition, CMP catalysts can be easily isolated and recycled. In this review, we focus on CMPs as an intriguing platform for developing various highly efficient and recyclable heterogeneous catalysts in organic reactions. The design, synthesis, and structure of these CMP catalysts are also discussed in this focus review.  相似文献   

14.
Porphyrin polymers are of interest in relation to conductive materials[1, 2], catalysts for photosynthetic charge separation[3], or the fundamental features in biological systems[4]. There have been many versatile studies about them[5.6]. The one-dimensional "Shish Kebab"porphyrin polymers synthesized with a new method different from those reported and Schiff-base porphyrin polymers with two-dimensional nano-structure have provided a new field of study. The present paper covers highly ordered…  相似文献   

15.
Heterogeneous gold nanocluster catalysts immobilized by the method known as polymer incarceration were prepared. Polystyrene-derived polymers with epoxide and alcohol moieties, which could be cross-linked under heating conditions, were employed as supports for their preparation. Cationic gold salts were reduced in a solution of NaBH4 and the polymers. Poor solvents for the polymers were added, and the polymers were precipitated and encapsulated gold nanoclusters with weak but multiple interactions between a gold nanocluster surface and the π electrons of benzene rings. The polymer capsules were heated under neat conditions to afford heterogeneous gold nanocluster catalysts; namely, polymer-incarcerated gold nanoclusters. The catalysts thus prepared could be applied to the aerobic oxidation of phenyl boronic acids, alcohols, and silyl enol ethers. We found that the choice of polymers, good and poor solvents for the polymers, metal loadings, heating conditions for cross-linking, and final activation were all crucial for obtaining high-activity catalysts.  相似文献   

16.
树枝化聚合物具有大量的分子内空腔、密集的表面官能团和纳米尺寸等特点,是均相催化剂的理想载体。树枝化聚合物催化剂结合了均相催化剂和多相催化剂的优点,能使反应在温和条件下达到高活性和高选择性。本文介绍了树枝化聚合物的合成,重点论述了树枝化聚合物催化剂的合成与催化作用,并展望了这类新型催化剂的发展前景。  相似文献   

17.
为了制备适于制造有机发光场效应管的高分子材料, 通过Suzuki偶联反应, 采用不同Pd催化剂, 合成了一种侧基横挂偶极基团的液晶9-苯亚甲基取代芴-苯共聚物. 考察了不同催化剂对合成的聚合物的分子量、聚合物链中单体单元的结构排列及液晶性质和光学性质的影响. 结果表明, 2种不同的Pd催化剂对合成的聚合物的分子量影响不大, 但对聚合物链的立构规整性以及聚合物的液晶态温度范围有较大的影响. Pd(PPh3)4作催化剂合成的聚合物(PA)中单体单元的结构排列较单一, 立构规整性好, 有较宽的液晶态温度范围. Pd(OAc)2为催化剂合成的聚合物(PB)链中单体单元的结构排列相对复杂, 液晶态温度范围较窄. 聚合物链的立构规整性对其光学性质影响很大. PA具有较高的溶液及固体膜的紫外最大吸收峰值和溶液荧光效率, 其退火膜的激发和发射光谱的半峰宽均比PB的窄, 并且光学性质不随加热条件的变化而变化.  相似文献   

18.
Polymeric supports have become a big necessity for automated synthesis and combinatorial chemistry, yet, the loading capacities of most polystyrene resins are very limited (typically < 1.5 mmol x g(-1)). Dendrimers and hyperbranched polymers have been discussed for this application and now became readily available. These soluble polymers can either be used directly as high-loading supports for substrates, reagents, and catalysts or alternatively in hybrid polymers linked to conventional polystyrene resins.  相似文献   

19.
Functional porous organic polymers for heterogeneous catalysis   总被引:1,自引:0,他引:1  
Porous organic polymers (POPs), a class of highly crosslinked amorphous polymers possessing nano-pores, have recently emerged as a versatile platform for the deployment of catalysts. The bottom-up approach for porous organic polymer synthesis provides the opportunity for the design of polymer frameworks with various functionalities, for their use as catalysts or ligands. This tutorial review focuses on the framework structures and functionalities of catalytic POPs. Their structural design, functional framework synthesis and catalytic reactions are discussed along with some of the challenges.  相似文献   

20.
姜淼  丁云杰  严丽  宋宪根  林荣和 《催化学报》2014,35(9):1456-1464
考察了编织芳基网络聚合物(KAPs)负载的Rh催化剂(Rh/KAPs)在高碳烯烃氢甲酰化反应中的催化性能. 结果表明,三苯基膦-苯基底KAPs负载Rh催化剂(Rh/KAPs-1)具有优异的高碳烯烃氢甲酰化反应活性,产物醛收率显著高于Rh/SiO2催化剂. 傅里叶变换红外光谱、热重、氮气吸附-脱附、X射线衍射、透射电子显微镜、13C核磁共振和31P核磁共振结果显示,Rh/KAPs-1催化剂具有优异的热稳定性及大的比表面积和多级孔道结构,Rh颗粒处于高度分散状态,并可在反应过程中形成均相催化活性物种.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号