首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The fragmentation functions and scattering amplitudes are investigated in the framework of light-front perturbation theory. It is demonstrated that, the factorization property of the fragmentation functions implies the recursion relations for the off-shell scattering amplitudes which are light-front analogs of the Berends–Giele relations. These recursion relations on the light-front can be solved exactly by induction and it is shown that the expressions for the off-shell light-front amplitudes are represented as a linear combinations of the on-shell amplitudes. By putting external particles on-shell we recover the scattering amplitudes previously derived in the literature.  相似文献   

2.
We construct a modified on-shell BCFW recursion relation to derive compact analytic representations of tree-level amplitudes in QED. As an application, we study the amplitudes of a fermion pair coupling to an arbitrary number of photons and give compact formulae for the NMHV and N2MHV case. We demonstrate that the new recursion relation reduces the growth in complexity with additional photons to be exponential rather than factorial.  相似文献   

3.
Arkani-Hamed et al. have recently shown that all tree-level scattering amplitudes in maximal supergravity exhibit exceptionally soft behavior when two supermomenta are taken to infinity in a particular complex direction, and that this behavior implies new non-trivial relations amongst amplitudes in addition to the well-known on-shell recursion relations. We consider the application of these new ‘bonus relations’ to MHV amplitudes, showing that they can be used quite generally to relate (n−2)!(n2)!-term formulas typically obtained from recursion relations to (n−3)!(n3)!-term formulas related to the original BGK conjecture. Specifically we provide (1) a direct proof of a formula presented by Elvang and Freedman, (2) a new formula based on one due to Bedford et al., and (3) an alternate proof of a formula recently obtained by Mason and Skinner. Our results also provide the first direct proof that the conjectured BGK formula, only very recently proven via completely different methods, satisfies the on-shell recursion.  相似文献   

4.
Combining the Berends-Giele and on-shell recursion relations we obtain an extremely compact expression for the scattering amplitude of a complex massive scalar-antiscalar pair and an arbitrary number of positive helicity gluons. This is one of the basic building blocks for constructing other helicity configurations from recursion relations. We also show explicitly that the scattering amplitude of massive fermions to gluons, all with positive helicity, is proportional to the scalar one, confirming in this way the recently advocated SUSY-like Ward identities relating both amplitudes.  相似文献   

5.
We derive the analog of the Cachazo–Svr?ek–Witten (CSW) diagrammatic Feynman rules for four-dimensional Yang–Mills gauge theory coupled to a massive colored scalar. The mass term is shown to give rise to a new tower of vertices in addition to the CSW vertices for massless scalars in non-supersymmetric theories. The rules are derived directly from an action, once through a canonical transformation within light-cone Yang–Mills and once by the construction of a twistor action. The rules are tested against known results in several examples and are used to simplify the proof of on-shell recursion relations for amplitudes with massive scalars.  相似文献   

6.
We propose a recursion relation for tree-level scattering amplitudes in three-dimensional Chern-Simons-matter theories. The recursion relation involves a complex deformation of momenta which generalizes the BCFW-deformation used in higher dimensions. Using background field methods, we show that all tree-level superamplitudes of the ABJM theory vanish for large deformations, establishing the validity of the recursion formula. Furthermore, we use the recursion relation to compute six-point and eight-point component amplitudes and match them with independent computations based on Feynman diagrams or the Grassmannian integral formula. As an application of the recursion relation, we prove that all tree-level amplitudes of the ABJM theory have dual superconformal symmetry. Using generalized unitarity methods, we extend this symmetry to the cut-constructible parts of the loop amplitudes.  相似文献   

7.
《Nuclear Physics B》1996,462(1):192-210
The Ward identities of the W symmetry in two-dimensional string theory in the tachyon background are studied in the continuum approach. We consider amplitudes different from 2D string ones by the external leg factor and derive the recursion relations among them. The recursion relations have non-linear terms which give relations among the amplitudes defined on different genus. The solutions agree with the matrix model results even in higher genus. We also discuss the differences of the roles of the external leg factor between the cM = 1 model and the cm < 1 model.  相似文献   

8.
We study higher level Regge resonances of open superstrings, focusing on the universal part of the Neveu-Schwarz sector common to all D-brane realizations of the standard model. For Regge states with masses far above the fundamental string scale, we discuss the spin-dependence of their decay rates into massless gauge bosons. Extending our previous work on lowest level string excitations, we study the second mass level at which spins range from 0 to 3. We construct the respective vertex operators and compute the amplitudes involving one massive particle and two or three gauge bosons. To illustrate the use of Britto-Cachazo-Feng-Witten (BCFW) recursion relations in superstring theory, we build the four-gluon amplitude from on-shell amplitudes involving string resonances and gauge bosons.  相似文献   

9.
Form factors are quantities that involve both asymptotic on-shell states and gauge invariant operators. They provide a natural bridge between on-shell amplitudes and off-shell correlation functions of operators, thus allowing us to use modern on-shell amplitude techniques to probe into the off-shell side of quantum field theory. In particular, form factors have been successfully used in computing the cusp(soft) anomalous dimensions and anomalous dimensions of general local operators. This review is intended to provide a pedagogical introduction to some of these developments. We will first review some amplitudes background using four-point amplitudes as main examples. Then we generalize these techniques to form factors, including(1) tree-level form factors,(2) Sudakov form factor and infrared singularities, and(3) form factors of general operators and their anomalous dimensions. Although most examples we consider are inN= 4 super-Yang-Mill theory, the on-shell methods are universal and are expected to be applicable to general gauge theories.  相似文献   

10.
The off-shell pion-nucleon transition matrix is a basic ingredient in theories of pion-nuclear interactions which, in the absence of fundamental theory of πN dynamics, must be obtained by a phenomenological extrapolation from the available on-shell data. As one means of performing such an extrapolation, we explore a multichannel separable potential model with the property that the off-shell elastic scattering amplitude is generated directly from the measured elastic-channel phase shifts. The off-shell πN partial-wave transition amplitudes determined by this procedure are compared with those calculated by Landau and Tabakin using a one-channel absorptive separable potential. We find that the absorptive separable potential approach provides a physically unreasonable off-shell extrapolation at energies where the on-shell amplitude is highly inelastic, and show that the difficulty is a direct consequence of the one-channel nature of that method. The multichannel extrapolation is free of these difficulties.  相似文献   

11.
W. Siegel 《Nuclear Physics B》1981,177(2):325-332
We show that general considerations of the properties of free on-shell O(N) superfield strengths lead directly to linearized on-shell O(N) supergravity. We consequently obtain a formulation of the fully non-linear on-shell theories in which all fields are contained in the covariant derivatives.  相似文献   

12.
We present a pedagogical review of our current understanding of the ultraviolet structure of N = (1,1) 6D supersymmetric Yang–Mills theory and of N = 8 4D supergravity. These theories are not renormalizable, they involve power ultraviolet divergences and, in all probability, an infinite set of higherdimensional counterterms that contribute to on-mass-shell scattering amplitudes. A specific feature of supersymmetric theories (especially, of extended supersymmetric theories) is that these counterterms may not be invariant off shell under the full set of supersymmetry transformations. The lowest-dimensional nontrivial counterterm is supersymmetric on shell. Still higher counterterms may lose even the on-shell invariance. On the other hand, the full effective Lagrangian, generating the amplitudes and representing an infinite sum of counterterms, still enjoys the complete symmetry of original theory. We also discuss simple supersymmetric quantum-mechanical models that exhibit the same behaviour.  相似文献   

13.
We discuss the implications of gauge invariance in the problem of the on-shell extrapolation of the electroproduction low-energy theorems. We show that there is an invariant amplitude which can be evaluated at the Breit threshold either using gauge invariance and on-shell dispersion relations or following the Fubini and Furlan [5] extrapolation method starting from the current-algebra low-energy value of the amplitude. Comparing the two expressions, we find a relation between the electromagnetic pion form factor, Fπ (k2), and the axial-vector nucleon form factors, gA (k2) and hA (k2).  相似文献   

14.
In this paper, we give the general expressions for a special series of tree amplitudes of the Yang–Mills theory. This series of amplitudes have two adjacent massless spin-1 particles with extra-dimensional momenta and any number of positive helicity gluons. With special helicity choices, we use the spinor helicity formalism to express these n-point amplitudes in compact forms, and find a clever way to use the BCFW recursion relations to prove the results. Then these amplitudes are used to form the complete 1-loop all-plus integrand with any number of gluons, expressed in the \(\mathcal {Q}\)-cut representation.  相似文献   

15.
Reflection amplitudes are defined as two-point functions of certain class of conformal field theories where primary fields are given by vertex operators with real couplings. Among these, we consider (Super-) Liouville theory and simply and non-simply laced Toda theories. In this paper we show how to compute the scaling functions of effective central charge for the models perturbed by some primary fields which maintains integrability. This new derivation of the scaling functions are compared with the results from conventional TBA approach and confirms our approach along with other non-perturbative results such as exact expressions of the on-shell masses in terms of the parameters in the action, exact free energies. Another important application of the reflection amplitudes is a computation of one-point functions for the integrable models. Introducing functional relations between the one-point functions in terms of the reflection amplitudes, we obtain explicit expressions for simply-laced and non-simply-laced affine Toda theories. These nonperturbative results are confirmed numerically by comparing the free energies from the scaling functions with exact expressions we obtain from the one-point functions.  相似文献   

16.
17.
We have implemented the leading-color n-gluon amplitudes using the Berends–Giele recursion relations on a multi-threaded GPU. Speed-up factors between 150 and 300 are obtained compared to the CPU-based implementation of the same event generator. In this first paper, we study the feasibility of a GPU-based event generator with an emphasis on the constraints imposed by the hardware. Some studies of Monte Carlo convergence and accuracy are presented for PP→2,…,10 jet observables using of the order of 1011 events.  相似文献   

18.
The formulation of rigorous, dispersion relations for on-shell three-body amplitudes in a separable model is reported. The results of approximate ND calculations of s-wave n-d elastic scattering are compared with exact, numerical solutions of the Faddeev equations.  相似文献   

19.
The manifestly covariant formalism for dealing with physical S-matrix elements for processes between relativistic particles of arbitrary spin is reviewed. An emphasis is made on the use of homogenous polynomial techniques. Some regularity properties of the spinor amplitudes implied by general on-shell conditions (such as Lorentz invariance and boundedness of the S-operator) are discussed. Covariant decompositions for 2-particles scattering amplitudes are derived in the framework of distribution theory.  相似文献   

20.
《Nuclear Physics B》1986,276(2):391-428
Using a path integral technique we find a closed expression (to all orders in α′) for the abelian, constant field strenght limit of the (tree) effective action for the massless vector field in the open superstring theory. The result is a modification of the Born-Infeld action found in the Bose string theory case. One-loop correction to the effective action is computed and shown to be finite if the gauge group is SO(32). It is demonstrated how the on-shell superstring scattering amplitudes can be calculated in the path-integral approach. We determine the leading (O(α') and O(α2)) terms in the full non-abelian effective action starting from the known results for the 3-point and 4-point amplitudes. We find that because of the equivalence theorem the coefficients of some of the invariant structures in the effective lagrangian cannot be fixed from the S-matrix. In the path integral approach this ambiguity manifests itself as a 2d renormalization scheme (and Weyl gauge choice) ambiguity. We also discuss the leading terms in the gravitational effective actions in the closed (super) string theories and point out that whether or not the R2 terms form the “Gauss-Bonnet” combination depends on choice of a renormalization (massless exchange subtraction) scheme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号