首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report on a method for the identification of selenium-containing proteins in an extract of sunflower leafs. It is based on the separation of the proteins by 2-dimensional gel electrophoresis, followed by detection of selenium via laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). The laser system was operated in a raster mode at 100?μm?s-1 and proved to be an efficient alternative in the search for selenoproteins in the spots of the gels. The instrumental parameters were optimized in terms of plasma energy and application of optimal reaction cell conditions, and the detection of the mass 80Se16O+ which enabled the elimination of interfering species. Selenium was identified in 9.6% of the analyzed spots, indicating its random incorporation into the primary structure of the proteins.
Graphical abstract
This work describes the detection of selenium in sunflower leaf proteins from plants irrigated with selenite ions by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) after protein extraction and separation through two-dimensional gel electrophoresis.  相似文献   

2.
Ubiquitination is an abundant post-translational modification that consists of covalent attachment of ubiquitin to lysine residues or the N-terminus of proteins. Mono- and polyubiquitination have been shown to be involved in many critical eukaryotic cellular functions and are often disrupted by intracellular bacterial pathogens. Affinity enrichment of ubiquitinated proteins enables global analysis of this key modification. In this context, the use of ubiquitin-binding domains is a promising but relatively unexplored alternative to more broadly used immunoaffinity or tagged affinity enrichment methods. In this study, we evaluated the application of eight ubiquitin-binding domains that have differing affinities for ubiquitination states. Small-scale proteomics analysis identified ~200 ubiquitinated protein candidates per ubiquitin-binding domain pull-down experiment. Results from subsequent Western blot analyses that employed anti-ubiquitin or monoclonal antibodies against polyubiquitination at lysine 48 and 63 suggest that ubiquitin-binding domains from Dsk2 and ubiquilin-1 have the broadest specificity in that they captured most types of ubiquitination, whereas the binding domain from NBR1 was more selective to polyubiquitination. These data demonstrate that with optimized purification conditions, ubiquitin-binding domains can be an alternative tool for proteomic applications. This approach is especially promising for the analysis of tissues or cells resistant to transfection, of which the overexpression of tagged ubiquitin is a major hurdle.
Figure
?  相似文献   

3.
This study presents a novel direct analysis strategy for rapid mass spectrometric profiling of biochemicals in real-world samples via a direct sampling probe (DSP) without sample pretreatments. Chemical modification is applied to a disposable stainless steel acupuncture needle to enhance its surface area and hydrophilicity. After insertion into real-world samples, biofluid can be attached on the DSP surface. With the presence of a high DC voltage and solvent vapor condensing on the tip of the DSP, analyte can be dissolved and electrosprayed. The simplicity in design, versatility in application aspects, and other advantages such as low cost and disposability make this new method a competitive tool for direct analysis of real-world samples.
Figure
?  相似文献   

4.
A detailed characterization of metal-tagged antibodies is the prerequisite for the implementation of quantitative concepts in inductively coupled plasma–mass spectrometry (ICP-MS)-based bioanalysis or future medical diagnosis. In this paper, the common modification with bifunctional ligands containing maleimide residues as a reactive group was investigated in detail via size exclusion chromatography (SEC)-ICP-MS and liquid chromatography–time-of-flight (LC-TOF)-MS to determine the preservation of the antibody structure after tagging. Mouse monoclonal IgG modified with metal-coded tags (MeCATs) was used as a model system. Several antibody fragments were identified carrying different numbers of metal tags. In a second step, a functionality test was performed with isolated fragments where the antigen specificity was tested in a dot blot immunoassay.
Figure
SEC-ICP-MS chromatogram of metal tagged antibody  相似文献   

5.
Much progress has been made in identification of the proteins in proteomes, and quantification of these proteins has attracted much interest. In addition to popular tandem mass spectrometric methods based on soft ionization, inductively coupled plasma mass spectrometry (ICPMS), a typical example of mass spectrometry based on hard ionization, usually used for analysis of elements, has unique advantages in absolute quantification of proteins by determination of an element with a definite stoichiometry in a protein or attached to the protein. In this Trends article, we briefly describe state-of-the-art ICPMS-based methods for quantification of proteins, emphasizing protein-labeling and element-tagging strategies developed on the basis of chemically selective reactions and/or biospecific interactions. Recent progress from protein to cell quantification by use of ICPMS is also discussed, and the possibilities and challenges of ICPMS-based protein quantification for universal, selective, or targeted quantification of proteins and cells in a biological sample are also discussed critically. We believe ICPMS-based protein quantification will become ever more important in targeted quantitative proteomics and bioanalysis in the near future.
Online Abstract Figure
ICPMS-based protein and cell quantification  相似文献   

6.
In this study, we describe characterization of the human plasma proteome based on analysis with multifunctional chitosan-GMA-IDA-Cu(II) nanospheres. Chitosan-GMA-IDA-Cu(II) nanospheres with diameters of 20 to 100?nm have unique properties due to multifunctional chemical moieties, high surface area, high capacity, good dispersibility in buffer solution as well as good biocompatibility and chemical stability which improves their specific interaction with peptides and proteins of the human plasma using different binding buffers. Combining these chitosan-GMA-IDA-Cu(II) nanospheres with MS spectrometry results in a novel strategy which should make it possible to characterize the plasma proteome in a single test. Peptides and proteins adsorbed on the nanosphere can be directly detected by MALDI-TOF-MS. The eluted lower molecular weight peptides and proteins are identified by nano-LC-ESI-MS/MS. A total of 842 unique LMW peptides and 1,682 human unredundant proteins IDs were identified in two different binding buffers, which included relatively low-level proteins (e.g., pg/mL of IL3 Interleukin-3) co-distributed with high-abundance proteins (e.g., 35?C55?mg/mL level serum albumin). As such, this nanosphere technique selectively enabled the identification of proteins over a dynamic range of greater than 8 orders of magnitude. Considering this capacity for selective enrichment of peptides and proteins in human plasma, and the large number of LMW peptides and proteins which can be identified, this method promises to accelerate discovery of biomarkers for clinical application.
Figure
The human plasma proteome based on analysis with multifunctional chitosan-GMA-IDA-Cu(II) nanospheres which improves their specific interaction with peptides and proteins of the human plasma using different binding buffers. Combining these chitosan-GMA-IDA-Cu(II) nanosphere with MS spectrometry, results in a novel strategy which should make it possible to characterize the plasma proteome in a single test.  相似文献   

7.
Site-specific protein modification—e.g. for immobilization or labelling—is a key prerequisite for numerous bioanalytical applications. Although modification by use of short peptide tags is particularly attractive, efficient and bio-orthogonal systems are still lacking. Here, we review the application of multivalent chelators (MCH) for high-affinity yet reversible recognition of oligohistidine (His)-tagged proteins. MCH are based on multiple nitrilotriacetic acid (NTA) moieties grafted on to molecular scaffolds suitable for conjugation to surfaces, probes or other biomolecules. Reversible interaction with the His-tag is mediated via transition metal ions chelated by the NTA moieties. The small size and biochemical compatibility of these recognition units and the possibility of rapid dissociation of the interaction with His-tagged proteins despite sub-nanomolar binding affinity, enable distinct and versatile handling and modification of recombinant proteins. In this review, we briefly introduce the key principles and features of MCH–His-tag interactions and recapitulate the broad spectrum of bioanalytical applications with a focus on quantitative protein interaction analysis on micro or nano-patterned solid surfaces and specific protein labelling in living cells.
Figure 1
?  相似文献   

8.
Liquid chromatography coupled to multistage mass spectrometry (LC-MSn) is being used increasingly in pharmaceutical research and for quality control in herbal medicines because of its superior sensitivity and selectivity. In this study, a rapid, high-resolution liquid chromatography-mass spectrometry (LC-MSn) method was developed to separate and identify alkaloids in the root extract of goldenseal, which is one of the 20 most popular herbal supplements used worldwide. In total, 28 alkaloids were separated and characterized including one novel compound and 21 identified, or tentatively identified, for the first time in goldenseal. The current high-resolution LC-MSn method provides a rapid and definitive means of profiling the composition of goldenseal root and will provide a useful tool in understanding the bioactivity of this medicinal plant.
Figure
Extraction and Orbitrap LC-MSn analysis of Goldenseal root for alkaloid identification  相似文献   

9.
Dried blood spot (DBS) sampling methods are desirable for population-wide biomarker screening programs because of their ease of collection, transportation, and storage. Immunoassays are traditionally used to quantify endogenous proteins in these samples but require a separate assay for each protein. Recently, targeted mass spectrometry (MS) has been proposed for generating highly-multiplexed assays for biomarker proteins in DBS samples. In this work, we report the first comparison of proteins in whole blood and DBS samples using an untargeted MS approach. The average number of proteins identified in undepleted whole blood and DBS samples by liquid chromatography (LC)/MS/MS was 223 and 253, respectively. Protein identification repeatability was between 77 %–92 % within replicates and the majority of these repeated proteins (70 %) were observed in both sample formats. Proteins exclusively identified in the liquid or dried fluid spot format were unbiased based on their molecular weight, isoelectric point, aliphatic index, and grand average hydrophobicity. In addition, we extended this comparison to include proteins in matching plasma and serum samples with their dried fluid spot equivalents, dried plasma spot (DPS), and dried serum spot (DSS). This work begins to define the accessibility of endogenous proteins in dried fluid spot samples for analysis by MS and is useful in evaluating the scope of this new approach.
Figure
?  相似文献   

10.
Previously, we reported that MALDI spectra of peptides became reproducible when temperature was kept constant. Linear calibration curves derived from such spectral data could be used for quantification. Homogeneity of samples was one of the requirements. Among the three popular matrices used in peptide MALDI [i.e., α-cyano-4-hydroxycinnamic acid (CHCA), 2,5-dihydroxybenzoic acid (DHB), and sinapinic acid (SA)], homogeneous samples could be prepared by conventional means only for CHCA. In this work, we showed that sample preparation by micro-spotting improved the homogeneity for all three cases.
Figure
?  相似文献   

11.
Flavonoids are one of the largest classes of plant secondary metabolites serving a variety of functions in plants and associating with a number of health benefits for humans. Typically, they are co-identified with many other secondary metabolites using untargeted metabolomics. The limited data quality of untargeted workflow calls for a shift from the breadth-first to the depth-first screening strategy when a specific biosynthetic pathway is focused on. Here we introduce a generic multiple reaction monitoring (MRM)-based approach for flavonoids profiling in plants using a hybrid triple quadrupole linear ion trap (QTrap) mass spectrometer. The approach includes four steps: (1) preliminary profiling of major aglycones by multiple ion monitoring triggered enhanced product ion scan (MIM-EPI); (2) glycones profiling by precursor ion triggered EPI scan (PI-EPI) of major aglycones; (3) comprehensive aglycones profiling by combining MIM-EPI and neutral loss triggered EPI scan (NL-EPI) of major glycone; (4) in-depth flavonoids profiling by MRM-EPI with elaborated MRM transitions. Particularly, incorporation of the NH3 loss and sugar elimination proved to be very informative and confirmative for flavonoids screening. This approach was applied for profiling flavonoids in Astragali radix (Huangqi), a famous herb widely used for medicinal and nutritional purposes in China. In total, 421 flavonoids were tentatively characterized, among which less than 40 have been previously reported in this medicinal plant. This MRM-based approach provides versatility and sensitivity that required for flavonoids profiling in plants and serves as a useful tool for plant metabolomics.
Figure
?  相似文献   

12.
Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) was used for the quantitative imaging of Fe, Cu and Zn in cryostat sections of human eye lenses and for depth profiling analysis in bovine lenses. To ensure a tight temperature control throughout the experiments, a new Peltier-cooled laser ablation cell was employed. For quantification purposes, matrix-matched laboratory standards were prepared from a pool of human lenses from eye donors and spiked with standard solutions containing different concentrations of natural abundance Fe, Cu and Zn. A normalisation strategy was also carried out to correct matrix effects, lack of tissue homogeneity and/or instrumental drifts using a thin gold film deposited on the sample surface. Quantitative images of cryo-sections of human eye lenses analysed by LA-ICP-MS revealed a homogeneous distribution of Fe, Cu and Zn in the nuclear region and a slight increase in Fe concentration in the outer cell layer (i.e. lens epithelium) at the anterior pole. These results were assessed also by isotope dilution mass spectrometry, and Fe, Cu and Zn concentrations determined by ID-ICP-MS in digested samples of lenses and lens capsules.
Figure
Depth profiling analysis and quantitative imaging analyses of Fe, Cu and Zn in eye lens sections by LA-ICP-MS using matrix-matched laboratory standards for external calibration and 197Au+ as internal standard  相似文献   

13.
Mulitpotent mesenchymal stem cells (MSCs) derived from human bone marrow are promising candidates for the development of cell therapeutic strategies. MSC surface protein profiles provide novel biological knowledge concerning the proliferation and differentiation of these cells, including the potential for identifying therapeutic targets. Basic fibroblast growth factor (bFGF) affects cell surface proteins, which are associated with increased growth rate, differentiation potential, as well as morphological changes of MSCs in vitro. Cell surface proteins were isolated using a biotinylation-mediated method and identified using a combination of one-dimensional sodium dodecyl sulfate–polyacrylamide gel electrophoresis and mass spectrometry. The resulting gel lines were cut into 20 bands and digested with trypsin. Each tryptic fragment was analyzed by liquid chromatography–electrospray ionization tandem mass spectrometry. Proteins were identified using the Mascot search program and the International Protein Index human database. Noble MSC surface proteins (n?=?1,001) were identified from cells cultured either with (n?=?857) or without (n?=?667) bFGF-containing medium in three independent experiments. The proteins were classified using FatiGO to elucidate their function. We also confirmed the proteomics results using Western blotting and immunofluorescence microscopic analysis. The nature of the proteins identified makes it clear that MSCs express a wide variety of signaling molecules, including those related to cell differentiation. Among the latter proteins, four Ras-related Rab proteins, laminin-R, and three 14-3-3 proteins that were fractionated from MSCs cultured on bFGF-containing medium are implicated in bFGF-induced signal transduction of MSCs. Consequently, these finding provide insight into the understanding of the surface proteome of human MSCs.
Figure
?  相似文献   

14.
Dried blood spots offer many advantages as a sample format including ease and safety of transport and handling. To date, the majority of mass spectrometry analyses of dried blood spots have focused on small molecules or hemoglobin. However, dried blood spots are a potentially rich source of protein biomarkers, an area that has been overlooked. To address this issue, we have applied an untargeted bottom-up proteomics approach to the analysis of dried blood spots. We present an automated and integrated method for extraction of endogenous proteins from the surface of dried blood spots and sample preparation via trypsin digestion by use of the Advion Biosciences Triversa Nanomate robotic platform. Liquid chromatography tandem mass spectrometry of the resulting digests enabled identification of 120 proteins from a single dried blood spot. The proteins identified cross a concentration range of four orders of magnitude. The method is evaluated and the results discussed in terms of the proteins identified and their potential use as biomarkers in screening programs.
Figure
?  相似文献   

15.
Plasma protein adsorption is regarded as a key factor in the in vivo organ distribution of intravenously administered drug carriers, and strongly depends on vector surface characteristics. The present study aimed to characterize the “protein corona” absorbed onto DC-Chol-DOPE cationic liposomes. This system was chosen because it is one of the most efficient and widely used non-viral formulations in vitro and a potential candidate for in vivo transfection of genetic material. After incubation of human plasma with cationic liposomes, nanoparticle–protein complex was separated from plasma by centrifugation. An integrated approach based on protein separation by one-dimensional 12% polyacrylamide gel electrophoresis followed by the automated HPLC-Chip technology coupled to a high-resolution mass spectrometer was employed for protein corona characterization. Thirty gel lanes, approximately 2 mm, were cut, digested and analyzed by HPLC-MS/MS. Fifty-eight human plasma proteins adsorbed onto DC-Chol-DOPE cationic liposomes were identified. The knowledge of the interactions of proteins with liposomes can be exploited for future controlled design of colloidal drug carriers and possibly in the controlled creation of biocompatible surfaces of other devices that come into contact with proteins in body fluids.
Scheme of protein adsorption onto nanoparticle surface  相似文献   

16.
Glycation is a post-translational modification (PTM) that affects the physiological properties of peptides and proteins. In particular, during hyperglycaemia, glycation by α-dicarbonyl compounds generate α-dicarbonyl-derived glycation products also called α-dicarbonyl-derived advanced glycation end products. Glycation by the α-dicarbonyl compound known as glyoxal was studied in model peptides by MS/MS using a Fourier transform ion cyclotron resonance mass spectrometer. An unusual type of glyoxal-derived AGE with a mass addition of 21.98436 Da is reported in peptides containing combinations of two arginine-two lysine, and one arginine-three lysine amino acid residues. Electron capture dissociation and collisionally activated dissociation results supported that the unusual glyoxal-derived AGE is formed at the guanidino group of arginine, and a possible structure is proposed to illustrate the 21.9843 Da mass addition.
Figure
?  相似文献   

17.
An investigation was made on plasma samples obtained after protein separation. The proteome of the plasma of Nile tilapia (Oreochromis niloticus) was separated by 2D PAGE, and manganese and zinc in protein spots was qualitatively and quantitatively determined by synchrotron radiation X-ray fluorescence (SR-XRF) and graphite furnace atomic absorption spectrometry (GFAAS). Manganese and zinc are present in four and six plasma protein spots, respectively. These ions are bound to proteins with molecular weights ranging from 19 to 70?kDa and with isoelectric point (pI) ranging from 4.7 to 6.3. The concentrations of manganese and zinc bound to these proteins as determined by GFAAS following acid digestion of the spots range from 0.8 to 2.6?mg of manganese, and from 1.0 to 6.3?mg of zinc, respectively, per g of protein.
Figure
2D-Page Plasma  相似文献   

18.
19.
Time-of-flight secondary ion mass spectrometry (ToF-SIMS) is a well-established technique in materials science, but is now increasingly applied also in the life sciences. Here, we demonstrate the potential of this analytical technique for use in the development of new bone implant materials. We tracked strontium-enriched calcium phosphate cements, which were developed for the treatment of osteoporotic bone, from in vitro to in vivo. Essentially, the spatial distribution of strontium in two different types of strontium-modified calcium phosphate cements is analysed by SIMS depth profiling. To gain information about the strontium release kinetics, the cements were immersed for 3, 7, 14 and 21 days in α-MEM and tris(hydroxymethyl)-aminomethane solution and analysed afterwards by ToF-SIMS depth profiling. For cements stored in α-MEM solution an inhibited strontium release was observed. By using principal component analysis to evaluate TOF-SIMS surface spectra, we are able to prove the adsorption of proteins on the cement surface, which inhibit the release kinetics. Cell experiments with human osteoblast-like cells cultured on the strontium-modified cements and subsequent mass spectrometric analysis of the mineralised extracellular matrix (mECM) prove clearly that strontium is incorporated into the mECM of the osteoblast-like cells. Finally, in an animal experiment, the strontium-doped cements are implanted into the femur of osteoporotic rats. After 6 weeks, only a slight release of strontium was found in the vicinity of the implant material. By using ToF-SIMS, it is proven that strontium is localised in regions of newly formed bone but also within the pre-existing tissue.
Figure
Schematic illustration of the performed measurements.  相似文献   

20.
In this work, we present the development of a method for the determination of doxorubicin in plasma samples in the presence of an unexpected component (riboflavin) by using total synchronous fluorescence spectroscopic data matrices. To the best of our knowledge, this is the first time that the second-order advantage is obtained with this kind of data. Two strategies including unfolding the data and: (a) processing with multivariate curve resolution coupled to alternating least-squares as first-order data or (b) processing with unfolded partial least-squares and exploiting the second-order advantage by the residual bilinearization procedure were considered. The calibration set was built with human plasma samples spiked with doxorubicin, while the validation set was prepared with human plasma samples spiked with both doxorubicin and riboflavin, a drug whose spectrum highly overlaps with the one corresponding to doxorubicin. Both methodologies reached good indicators of accuracy: recoveries of ca. 100?±?8 % and REP of ca. 5 %; and precision: coefficient of variations between 7 and 9 %.
Figure
?  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号