首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The structure of N,N-dimethylethylenediammonium pentachloroantimonate(III), [(CH3)2NH(CH2)2NH3][SbCl5], NNDP, was investigated at 100 and 15 K at ambient pressure, as well as at pressures up to 4.00 GPa at room temperature in the diamond-anvil cell. The stable structure at low temperatures and low pressures consists of isolated [SbCl5]2- anions and [(CH3)2NH(CH2)2NH3]2+ cations. The inorganic anions have a distorted square pyramidal geometry. They are arranged in linear chains parallel to the c axis. In contrast to the low-temperature studies, where no phase transition was detected, pressure induces a P2(1)/c --> P2(1)/n phase transition between 0.55 and 1.00 GPa, accompanied by a doubling of the a unit-cell parameter. This solid-solid transition results from changes in the electron configuration of the Sb(III) atom and formation of the Sb-Cl bridging bonds between inorganic polyhedra to form, at approximately 1.0 GPa, isolated [Sb2Cl10]4- units consisting of [SbCl6]3- octahedra and [SbCl5]2- square pyramids connected by a common corner. The intermolecular distances continuously decrease with further increase in pressure, and at approximately 3.1 GPa, zigzag [{SbCl5}n]2n- chains containing corner-sharing [SbCl6]3- octahedra are formed. The unit-cell volume of NNDP decreases by 18.15% between room pressure and 4.00 GPa. The linear distortions of the [SbCl5]2- and [SbCl6]3- polyhedra decrease with increasing pressure and decreasing temperature and indicate a reduction in the stereochemical activity of the lone electron pair on the Sb(III) atom.  相似文献   

2.
First principles calculations are performed to investigate the structural, mechanical, and electronic properties of C2N2(NH). Our calculated lattice parameters are in good agreement with the experimental data and previous theoretical values. Orthorhombic C2N2(NH) phase is found to be mechanically stable at an ambient pressure. Based on the calculated bulk modulus and shear modulus of polycrystalline aggregate, C2N2(NH) can be regarded as a potential candidate of ultra-incompressible and hard material. Furthermore, the elastic anisotropy and Debye temperatures are also discussed by investigating the elastic constants and moduli. Density of states and electronic localization function analysis show that the strong C-N covalent bond in CN4 tetrahedron is the main driving force for the high bulk and shear moduli as well as small Poisson's ratio of C2N2(NH).  相似文献   

3.
The effect of static compression up to 65 GPa at ambient temperature on ammonia borane, BH(3)NH(3), has been investigated using in situ Raman spectroscopy in a diamond anvil cells. Two phase transitions were observed at approximately 12 GPa and previously not reported transition at 27 GPa. It was demonstrated that ammonia borane behaves differently under compression at quasi-hydrostatic and non-hydrostatic conditions. The ability of BH(3)NH(3) to generate second harmonic of the laser light observed up to 130 GPa suggests that the non-centrosymmetric point group symmetry is preserved in the material up to very high pressures.  相似文献   

4.
The structural, electronic, optical, and vibrational properties of LiN(3) under high pressure have been studied using plane wave pseudopotentials within the generalized gradient approximation for the exchange and correlation functional. The calculated lattice parameters agree quite well with experiments. The calculated bulk modulus value is found to be 23.23 GPa, which is in good agreement with the experimental value of 20.5 GPa. Our calculations reproduce well the trends in high-pressure behavior of the structural parameters. The present results show that the compressibility of LiN(3) crystal is anisotropic and the crystallographic b-axis is more compressible when compared to a- and c-axes, which is also consistent with experiment. Elastic constants are predicted, which still awaits experimental confirmation. The computed elastic constants clearly show that LiN(3) is a mechanically stable system and the calculated elastic constants follow the order C(33) > C(11) > C(22), implying that the LiN(3) lattice is stiffer along the c-axis and relatively weaker along the b-axis. Under the application of pressure the magnitude of the electronic band gap value decreases, indicating that the system has the tendency to become semiconductor at high pressures. The optical properties such as refractive index, absorption spectra, and photoconductivity along the three crystallographic directions have been calculated at ambient as well as at high pressures. The calculated refractive index shows that the system is optically anisotropic and the anisotropy increases with an increase in pressure. The observed peaks in the absorption and photoconductivity spectra are found to shift toward the higher energy region as pressure increases, which implies that in LiN(3) decomposition is favored under pressure with the action of light. The vibrational frequencies for the internal and lattice modes of LiN(3) at ambient conditions as well as at high pressures are calculated from which we predict that the response of the lattice modes toward pressure is relatively high when compared to the internal modes of the azide ion.  相似文献   

5.
胡燕飞  孔凡杰  周春 《物理化学学报》2008,24(10):1845-1849
利用第一性原理平面波模守恒赝势密度泛函理论研究了3C-SiC的结构, 其零温(0 K)零压下的晶格常数、体弹模量及其对压强的一阶导数、弹性常数的计算结果与实验值和其它理论计算结果相符合. 通过准谐德拜模型, 得到了不同温度不同压强下的热容和德拜温度, 发现热容随着压强增加而减小, 德拜温度随压强增加而增加, 并成功地获得了相对晶格常数、相对体积、体弹模量、热膨胀系数与温度和压强的关系.  相似文献   

6.
Raman spectroscopy and synchrotron X-ray diffraction are used to examine the high-pressure behavior of tetramethylammonium borohydride (TMAB) to 40 GPa at room temperature. The measurements reveal weak pressure-induced structural transitions around 5 and 20 GPa. Rietveld analysis and Le Bail fits of the powder diffraction data based on known structures of tetramethylammonium salts indicate that the transitions are mediated by orientational ordering of the BH(4)(-) tetrahedra followed by tilting of the (CH(3))(4)N(+) groups. X-ray diffraction patterns obtained during pressure release suggest reversibility with a degree of hysteresis. Changes in the Raman spectrum confirm that these transitions are not accompanied by bonding changes between the two ionic species. At ambient conditions, TMAB does not possess dihydrogen bonding, and Raman data confirms that this feature is not activated upon compression. The pressure-volume equation of state obtained from the diffraction data gives a bulk modulus [K(0) = 5.9(6) GPa, K(0)' = 9.6(4)] slightly lower than that observed for ammonia borane. Raman spectra obtained over the entire pressure range (spanning over 40% densification) indicate that the intramolecular vibrational modes are largely coupled.  相似文献   

7.
The structural, electronic and elastic properties of BeSe in both B3 and B8 structures have been studied by first-principles calculations within the generalized gradient approximation (GGA). The calculated lattice parameters and bulk modulus of BeSe are in reasonable agreement with previous results. The predicted value of phase transition pressure from B3 to B8 is 50.24 GPa, which is well in line with the experimental data (56 ± 5 GPa). The calculation of the electronic band structure shows that the energy gap is indirect for B3 and B8 phases. Especially, the elastic constants of B8 BeSe under high pressure were studied for the first time. The bulk modulus, shear modulus, compressional and shear wave velocities of B8 BeSe evaluated from elastic constants as a function of pressure were investigated. In addition, Poisson's radio, elastic anisotropy and Debye temperature were analyzed successfully.  相似文献   

8.
High-throughput first-principle calculations are implemented to study the structural, mechanical, and electronic properties of cubic XTiO3 (X = Ca, Sr, Ba, Pb) ceramics under high pressure. The effects of applied pressure on physical parameters, such as elastic constants, bulk modulus, Young's modulus, shear modulus, ductile-brittle transition, elastic anisotropy, Poisson's ratio, and band gap, are investigated. Results indicate that high pressure improves the resistance to bulk, elastic, and shear deformation for XTiO3 ceramics. Pugh's ratios B/G reveal that CaTiO3 and PbTiO3 ceramics are ductile, but SrTiO3 and BaTiO3 ceramics are brittle under the ground state. The brittle-to-ductile transition pressures are 24.26 GPa for SrTiO3 and 43.23 GPa for BaTiO3. Under high pressure, the strong anisotropy promotes the cross-slip process of screw dislocations, and then enhances the plasticity of XTiO3 ceramics. Meanwhile, XTiO3 (X = Ca, Sr, Ba) is intrinsically an indirect-gap ceramic, but PbTiO3 is a direct-gap ceramic. High pressure increases the band gap of XTiO3 (X = Ca, Sr, Ba) ceramic, but decreases that of PbTiO3 ceramic. This work is helpful for designing and applying XTiO3 ceramics under high pressure.  相似文献   

9.
The acoustic properties of three polymer elastomers, a cross-linked poly(dimethylsiloxane) (Sylgard 184), a cross-linked terpolymer poly(ethylene-vinyl acetate-vinyl alcohol), and a segmented thermoplastic poly(ester urethane) copolymer (Estane 5703), have been measured from ambient pressure to approximately 12 GPa by using Brillouin scattering in high-pressure diamond anvil cells. The Brillouin-scattering technique is a powerful tool for aiding in the determination of equations of state for a variety of materials, but to date has not been applied to polymers at pressures exceeding a few kilobars. For the three elastomers, both transverse and longitudinal acoustic modes were observed, though the transverse modes were observed only at elevated pressures (>0.7 GPa) in all cases. From the Brillouin frequency shifts, longitudinal and transverse sound speeds were calculated, as were the C(11) and C(12) elastic constants, bulk, shear, and Young's moduli, and Poisson's ratios, and their respective pressure dependencies. P-V isotherms were then constructed, and fit to several empirical/semiempirical equations of state to extract the isothermal bulk modulus and its pressure derivative for each material. Finally, the lack of shear waves observed for any polymer at ambient pressure, and the pressure dependency of their appearance is discussed with regard to instrumental and material considerations.  相似文献   

10.
Molecular and crystalline structures of (BH(3))(n) have been theoretically studied in the pressure regime from 1 atm to 100 GPa. At lower pressures, crystals of the familiar molecular dimer are the structure of choice. At 1 atm, in addition to the well-characterized β diborane structure, we suggest a new polymorph of B(2)H(6), fitting the diffraction lines observed in the very first X-ray diffraction investigation of solid diborane, that of Mark and Pohland in 1925. We also find a number of metastable structures for oligomers of BH(3), including cyclic trimers, tetramers, and hexamers. While the higher oligomers as well as one-dimensional infinite chains (bent at the bridging hydrogens) are less stable than the dimer at ambient pressure, they are stabilized, for reasons of molecular compactness, by application of external pressure. Using periodic DFT calculations, we predict that near 4 GPa a molecular crystal constructed from discrete trimers replaces the β diborane structure as the most stable phase and remains as such until 36 GPa. At higher pressures, a crystal of polymeric, one-dimensional chains is preferred, until at least 100 GPa.  相似文献   

11.
The equation of state of ZnO with rocksalt phase under high pressure and high temperature was calculated by using the molecular dynamics method with effective pair potentials which consist of the Coulomb, dispersion, and repulsion interaction. It was shown that molecular dynamics simulation is very successful in accurately reproducing the measured molar volumes of the rocksalt phase of ZnO over a wide range of temperatures and pressures. The simulated P-V -T data matched experimental results up to 10.4 GPa and 1273 K. In addition, the linear thermal expansion coe±cient, isothermal bulk modulus and its pressure derivative were also calculated and compared with available experimental data and the latest theoretical results at ambient condition. At extended temperature and pressure ranges, the P-V -T relationship, linear thermal expansion coe±cient, and isothermal bulk modulus were predicted up to 2273 K and 50 GPa. The detailed knowledge of thermodynamic behavior and equations of state at extreme conditions are of fundamental importance to the understanding of the physical properties of ZnO.  相似文献   

12.
We present structural, electronic, bonding and vibrational properties of new type hydrogen storage material calcium amidoborane ${\rm Ca}({\rm NH}_{2}{\rm BH}_{3})_{2}$ by first principles density functional theory using plane wave pseudopotential method. The calculated ground state properties are in good agreement with experiments. The computed Bulk modulus of ${\rm Ca}({\rm NH}_{2}{\rm BH}_{3})_{2}$ is found to be 28.7 GPa which is slightly higher than that of ${\rm NH}_{3}{\rm BH}_{3}$ indicating that the material is hard over ${\rm NH}_{3}{\rm BH}_{3}$ . From the band structure calculations, the compound is found to be a direct band gap insulator with a band gap of 3.27 eV at the Γ point. The calculated bandstructure shows that the top of the valance band is from the p states of N and the bottom of the conduction band is from d states of Ca. The Mulliken bond populations, Born effective charges and charge density distributions are used to analyze the bonding nature of the compound. It is found that the N‐H and B‐H bonds are covalent in nature. Further we also compared the phonon density of states and vibrational frequencies of ${\rm Ca}({\rm NH}_{2}{\rm BH}_{3})_{2}$ with ${\rm NH}_{3}{\rm BH}_{3}$ . The study reveals that in both the cases the heavier mass atoms Ca, N, B are involved in the low frequency vibrations whereas the higher frequency vibrations are from H atoms. It is also observed that the vibrational frequencies of B‐H bonds are soft in ${\rm Ca}({\rm NH}_{2}{\rm BH}_{3})_{2}$ when compared to ${\rm NH}_{3}{\rm BH}_{3}$ and thereby concluded that ${\rm Ca}({\rm NH}_{2}{\rm BH}_{3})_{2}$ is a potential hydrogen storage material for fuel cell applications when compared to ${\rm NH}_{3}{\rm BH}_{3}$ . © 2012 Wiley Periodicals, Inc.  相似文献   

13.
Raman spectroscopic analysis is performed on WO3 nanowires at room temperature at pressures from ambient conditions to 45 GPa. Linear dependence of the first‐order Raman signal on various high‐pressure (HP) sections is observed. Upon increasing the applied pressure, the WO3 nanowires undergo four phase transitions at pressures around 1.7, 4.6, 21.5, and 26.2 GPa, which are all less than that reported for bulk WO3. When the pressure is up to 42.5 GPa, a new high‐pressure phase (HP5) appears. This phase has never been reported and is not reversible while unloading the pressure.  相似文献   

14.
15.
We present a computational study of hydrostatic compression effects on the pentaerythritol tetranitrate (PETN) energetic material up to 22.7 GPa by means of the ab initio all-electron periodic Hartree-Fock quantum mechanical method with the STO-3G Gaussian basis set. We fitted the calculated volume-energy relation to the energy SJEOS polynomial function from which we obtained the compression dependence of the pressure (P), the bulk modulus (B), and its pressure derivative (B'). We also fitted the experimental volume-pressure relation to the pressure SJEOS polynomial function, which allowed us to calculate the experimental bulk modulus (B(exp)) and its pressure derivative (). Our calculated values, B = 6.73 GPa and B' = 24.63, are in reasonable agreement with the values B(exp) = 8.48 GPa and = 14.42 from our fit to the experimental X-ray data and with the value B(exp) = 9.8 GPa that was derived from the experimental elastic constants. In addition, we present a discussion on how the lattice vectors and the internal coordinates (i.e., bond lengths, bond angles, and torsion angles) of the C(CH(2)ONO(2))(4) molecules in the PETN lattice change during hydrostatic compression of the crystal. Our calculated results suggest that the C(CH(2)ONO(2))(4) molecules cannot be considered as being rigid but are in fact flexible, accommodating lattice compression through torsions, bendings in their bond angles, and contractions in their bond lengths. At pressures higher than about 8 GPa, however, both the C(CH(2)ONO(2))(4) molecules and the c lattice vector seem to stiffen somewhat. The a lattice vector does not exhibit this stiffening. As a consequence, the pressure dependence of the c/a ratio shows a minimum at about 8 GPa.  相似文献   

16.
The pressure-induced disproportionation reaction phase transition, mechanical, and dynamical properties of LaH2 with fluorite structure under high pressure are investigated by performing first-principles calculations using the projector augmented wave (PAW) method. The phase transition of 2LaH2 → LaH + LaH3 obtained from the usual condition of equal enthalpies occurs at the pressure of 10.38 GPa for Perdew–Wang (PW91) functional and 6.05 GPa for Ceperly–Adler (CA) functional, respectively. The result shows that the PW91 functional calculations agree excellently with the experimental finding of 11 GPa of synchrotron radiation (SR) X-ray diffraction (XRD) of Machida et al. and 10 GPa of their PBE functional theoretical result. Three independent single-crystal elastic constants, polycrystalline bulk modulus, shear modulus, Young's modulus, elastic anisotropy, Poisson's ratio, the brittle/ductile characteristics and elastic wave velocities over different directions dependences on pressure are also successfully obtained. Especially, the phonon dispersion curves and corresponding phonon density of states of LaH2 under high pressure are determined systematically using a linear-response approach to density functional perturbation theory (DFPT). Our results demonstrate that LaH2 in fluorite phase can be stable energetically up to 10.38 GPa, stabilized mechanically up to 17.98 GPa, and stabilized dynamically up to 29 GPa, so it may remain a metastable phase above 10.38 GPa up to 29 GPa, these calculated results accord with the recent X-Ray diffraction experimental finding and theoretical predictions of Machida et al.  相似文献   

17.
COF-1 has a structure with rigid 2D layers composed of benzene and B3O3 rings and weak van der Waals bonding between the layers. The as-synthesized COF-1 structure contains pores occupied by solvent molecules. A high surface area empty-pore structure is obtained after vacuum annealing. High-pressure XRD and Raman experiments with mesitylene-filled (COF-1-M) and empty-pore COF-1 demonstrate partial amorphization and collapse of the framework structure above 12–15 GPa. The ambient pressure structure of COF-1-M can be reversibly recovered after compression up to 10–15 GPa. Remarkable stability of highly porous COF-1 structure at pressures at least up to 10 GPa is found even for the empty-pore structure. The bulk modulus of the COF-1 structure (11.2(5) GPa) and linear incompressibilities (k[100]=111(5) GPa, k[001]=15.0(5) GPa) were evaluated from the analysis of XRD data and cross-checked against first-principles calculations.  相似文献   

18.
《Solid State Sciences》2012,14(8):1004-1011
The structural, electronic, elastic and thermal properties of YX (X = Cd, In, Au, Hg and Tl) intermetallic compounds crystallizing in B2-type structure have been studied using first principles density functional theory within generalized gradient approximation (GGA) for the exchange correlation potential. Amongst all the YX compounds, YIn is stable in distorted tetragonal (P4/mmm) CuAu-type structure at ambient pressure with very small energy difference of 0.00681 Ry. but it undergoes to CsCl-type (B2 phase) structure at 23.3 GPa. Rest of the compounds are stable in B2 structure at ambient condition. The values of elastic moduli as a function of pressure are also reported. The ductility of these compounds has been analyzed using the Pugh rule. Our calculated results indicate that YTl is the most ductile amongst all the B2-YX compounds. YAu is the hardest and less compressible compound due to the largest bulk modulus. The elastic properties such as Young's modulus (E), Poisson's ratio (σ) and anisotropic ratio (A) are also predicted. The anisotropic factor is found to be unity for YHg which shows that this compound is isotropic.  相似文献   

19.
We report first-principles study of structural, elastic, electronic and optical properties of the cubic perovskite-type BiAlO3 using the pseudopotential plane waves method within the local density approximation. The calculated structural parameters are in good agreement with previous calculations. The elastic constants and their pressure dependence are calculated using the static finite strain technique. A linear pressure dependence of the elastic stiffness is found. Band structures show that BiAlO3 has an indirect band gap between the occupied O 2p and unoccupied Bi 6p states. The density of states and Mulliken charge populations analysis shows that Al–O and Bi–O bonds are covalent with a strong hybridization. The variation of the gap versus pressure is well fitted to a quadratic function and an indirect to direct band gap transition occurs at 15.5 GPa. Furthermore, in order to understand the optical properties of BiAlO3, the dielectric function, absorption coefficient, refractive index, extinction coefficient, optical reflectivity and electron energy loss are calculated for radiation up to 30 eV.  相似文献   

20.
The sound velocity in polycrystalline ice was measured as a function of pressure at room temperature to 100 GPa, through the phase field of ice VII and crossing the ice X transition, by Brillouin scattering in order to examine the elasticity, compression mechanism, and structural transitions in this pressure range. In particular, we focused on previously proposed phase transitions below 60 GPa. Throughout this pressure range, we find no evidence for anomalous changes in compressibility, and the sound velocities and elastic moduli do not exhibit measurable discontinuous shifts with pressure. Subtle changes in the pressure dependence of the bulk modulus at intermediate pressures can be attributed to high shear stresses at these compressions. The C(11) and C(12) moduli are consistent with previously reported results to 40 GPa and increase monotonically at higher pressures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号