共查询到20条相似文献,搜索用时 189 毫秒
1.
Ying Zhao Antonio De Nicola Toshihiro Kawakatsu Giuseppe Milano 《Journal of computational chemistry》2012,33(8):868-880
The parallel implementation of a recently developed hybrid scheme for molecular dynamics (MD) simulations (Milano and Kawakatsu, J Chem Phys 2009, 130, 214106) where self‐consistent field theory (SCF) and particle models are combined is described. Because of the peculiar formulation of the hybrid method, considering single particles interacting with density fields, the most computationally expensive part of the hybrid particle‐field MD simulation can be efficiently parallelized using a straightforward particle decomposition algorithm. Benchmarks of simulations, including comparisons of serial MD and MD‐SCF program profiles, serial MD‐SCF and parallel MD‐SCF program profiles, and parallel benchmarks compared with efficient MD program GROMACS 4.5.4 are tested and reported. The results of benchmarks indicate that the proposed parallelization scheme is very efficient and opens the way to molecular simulations of large scale systems with reasonable computational costs. © 2012 Wiley Periodicals, Inc. 相似文献
2.
Adam K. Sieradzan Jordi Sans-Duñó Emilia A. Lubecka Cezary Czaplewski Agnieszka G. Lipska Henryk Leszczyński Krzysztof M. Ocetkiewicz Jerzy Proficz Paweł Czarnul Henryk Krawczyk Adam Liwo 《Journal of computational chemistry》2023,44(4):602-625
We report major algorithmic improvements of the UNRES package for physics-based coarse-grained simulations of proteins. These include (i) introduction of interaction lists to optimize computations, (ii) transforming the inertia matrix to a pentadiagonal form to reduce computing and memory requirements, (iii) removing explicit angles and dihedral angles from energy expressions and recoding the most time-consuming energy/force terms to minimize the number of operations and to improve numerical stability, (iv) using OpenMP to parallelize those sections of the code for which distributed-memory parallelization involves unfavorable computing/communication time ratio, and (v) careful memory management to minimize simultaneous access of distant memory sections. The new code enables us to run molecular dynamics simulations of protein systems with size exceeding 100,000 amino-acid residues, reaching over 1 ns/day (1 μs/day in all-atom timescale) with 24 cores for proteins of this size. Parallel performance of the code and comparison of its performance with that of AMBER, GROMACS and MARTINI 3 is presented. 相似文献
3.
Staš Bevc Christoph Junghans Matej Praprotnik 《Journal of computational chemistry》2015,36(7):467-477
We present a web toolkit STructure mapper and Online Coarse‐graining Kit for setting up coarse‐grained molecular simulations. The kit consists of two tools: structure mapping and Boltzmann inversion tools. The aim of the first tool is to define a molecular mapping from high, for example, all‐atom, to low, that is, coarse‐grained, resolution. Using a graphical user interface it generates input files, which are compatible with standard coarse‐graining packages, for example, Versatile Object‐oriented Toolkit for Coarse‐graining Applications and DL_CGMAP. Our second tool generates effective potentials for coarse‐grained simulations preserving the structural properties, for example, radial distribution functions, of the underlying higher resolution model. The required distribution functions can be provided by any simulation package. Simulations are performed on a local machine and only the distributions are uploaded to the server. The applicability of the toolkit is validated by mapping atomistic pentane and polyalanine molecules to a coarse‐grained representation. Effective potentials are derived for systems of TIP3P (transferable intermolecular potential 3 point) water molecules and salt solution. The presented coarse‐graining web toolkit is available at http://stock.cmm.ki.si . © 2014 Wiley Periodicals, Inc. 相似文献
4.
Oliwia M. Szklarczyk Eirini Arvaniti Wilfred F. van Gunsteren 《Journal of computational chemistry》2015,36(17):1311-1321
Force field parameters for polarizable coarse‐grained (CG) supra‐atomic models of liquid cyclohexane are proposed. Two different bead sizes were investigated, one representing two fine‐grained (FG) CH2r united atoms of the cyclohexane ring, and one representing three FG CH2r united atoms. Electronic polarizability is represented by a massless charge‐on‐spring particle connected to each CG bead. The model parameters were calibrated against the experimental density and heat of vaporization of liquid cyclohexane, and the free energy of cyclohexane hydration. Both models show good agreement with thermodynamic properties of cyclohexane, yet overestimate the self‐diffusion. The dielectric properties of the polarizable models agree very well with experiment. © 2015 Wiley Periodicals, Inc. 相似文献
5.
Adam Górecki Marcin Szypowski Maciej Długosz Joanna Trylska 《Journal of computational chemistry》2009,30(14):2364-2373
We developed a software package (RedMD) to perform molecular dynamics simulations and normal mode analysis of reduced models of proteins, nucleic acids, and their complexes. With RedMD one can perform molecular dynamics simulations in a microcanonical ensemble, with Berendsen and Langevin thermostats, and with Brownian dynamics. We provide force field and topology generators which are based on the one‐bead per residue/nucleotide elastic network model and its extensions. The user can change the force field parameters with the command line options that are passed to generators. Also, the generators can be modified, for example, to add new potential energy functions. Normal mode analysis tool is available for elastic or anisotropic network models. The program is written in C and C++ languages and the structure/topology of a molecule is based on an XML format. OpenMP technology for shared‐memory architectures was used for code parallelization. The code is distributed under GNU public licence and available at http://bionano.icm.edu.pl/software/ . © 2009 Wiley Periodicals, Inc. J Comput Chem, 2009 相似文献
6.
Shuntaro Chiba Yasushi Okuno Teruki Honma Mitsunori Ikeguchi 《Journal of computational chemistry》2019,40(29):2577-2585
We propose a novel force-field-parametrization procedure that fits the parameters of potential functions in a manner that the pair distribution function (DF) of molecules derived from candidate parameters can reproduce the given target DF. Conventionally, approaches to minimize the difference between the candidate and target DFs employ radial DFs (RDF). RDF itself has been reported to be insufficient for uniquely identifying the parameters of a molecule. To overcome the weakness, we introduce energy DF (EDF) as a target DF, which describes the distribution of the pairwise energy of molecules. We found that the EDF responds more sensitively to a small perturbation in the pairwise potential parameters and provides better fitting accuracy compared to that of RDF. These findings provide valuable insights into a wide range of coarse graining methods, which determine parameters using information obtained from a higher-level calculation than that of the developed force field. © 2019 The Authors. Journal of Computational Chemistry published by Wiley Periodicals, Inc. 相似文献
7.
8.
Highly branched polymers such as polyamidoamine (PAMAM) dendrimers are promising macromolecules in the realm of nanobiotechnology due to their high surface coverage of tunable functional groups. Modeling efforts of PAMAM can provide structural and morphological properties, but the inclusion of solvents and the exponential growth of atoms with generations make atomistic simulations computationally expensive. We apply an implicit solvent coarse‐grained model, called the Dry Martini force field, to PAMAM dendrimers. The reduced number of particles and the absence of a solvent allow the capture of longer spatiotemporal scales. This study characterizes PAMAM dendrimers of generations one through seven in acidic, neutral, and basic pH environments. Comparison with existing literature, both experimental and theoretical, is done using measurements of the radius of gyration, moment of inertia, radial distributions, and scaling exponents. Additionally, ion coordination distributions are studied to provide insight into the effects of interior and exterior protonation on counter ions. This model serves as a starting point for future designs of larger functionalized dendrimers. © 2015 Wiley Periodicals, Inc. 相似文献
9.
The modular software MOLSIM for all‐atom molecular and coarse‐grained simulations is presented with focus on the underlying concepts used. The software possesses four unique features: (1) it is an integrated software for molecular dynamic, Monte Carlo, and Brownian dynamics simulations; (2) simulated objects are constructed in a hierarchical fashion representing atoms, rigid molecules and colloids, flexible chains, hierarchical polymers, and cross‐linked networks; (3) long‐range interactions involving charges, dipoles and/or anisotropic dipole polarizabilities are handled either with the standard Ewald sum, the smooth particle mesh Ewald sum, or the reaction‐field technique; (4) statistical uncertainties are provided for all calculated observables. In addition, MOLSIM supports various statistical ensembles, and several types of simulation cells and boundary conditions are available. Intermolecular interactions comprise tabulated pairwise potentials for speed and uniformity and many‐body interactions involve anisotropic polarizabilities. Intramolecular interactions include bond, angle, and crosslink potentials. A very large set of analyses of static and dynamic properties is provided. The capability of MOLSIM can be extended by user‐providing routines controlling, for example, start conditions, intermolecular potentials, and analyses. An extensive set of case studies in the field of soft matter is presented covering colloids, polymers, and crosslinked networks. © 2015 The Authors. Journal of Computational Chemistry Published by Wiley Periodicals, Inc. 相似文献
10.
Simulation of DNA electrophoresis facilitates the design of DNA separation devices. Various methods have been explored for simulating DNA electrophoresis and other processes using implicit and explicit solvent models. Explicit solvent models are highly desired but their applications may be limited by high computing cost in simulating large number of solvent particles. In this work, a coarse-grained hybrid molecular dynamics (CGH-MD) approach was introduced for simulating DNA electrophoresis in explicit solvent of large number of solvent particles. CGH-MD was tested in the simulation of a polymer solution and computation of nonuniform charge distribution in a cylindrical nanotube, which shows good agreement with observations and those of more rigorous computational methods at a significantly lower computing cost than other explicit-solvent methods. CGH-MD was further applied to the simulation of DNA electrophoresis in a polymer solution and in a well-studied nanofluidic device. Simulation results are consistent with observations and reported simulation results, suggesting that CGH-MD is potentially useful for studying electrophoresis of macromolecules and assemblies in nanofluidic, microfluidic, and microstructure array systems that involve extremely large number of solvent particles, nonuniformly distributed electrostatic interactions, bound and sequestered water molecules. 相似文献
11.
从微观机理上研究表面活性剂对微乳胶粒形成的影响有利于推动微乳状液在各个领域的应用研究.本文采用分子动力学模拟方法研究了微乳胶粒的形成过程及表面活性剂对微乳胶粒形成的影响.正十二烷(C12H26)和十二烷基硫酸钠(SDS)作为油分子和表面活性剂分子的模型,Martini粗粒化(coarse.grained,CG)力场描述分子间和分子内的相互作用,对含有不同浓度的正十二烷和表面活性剂的12个模型分别进行了100ns的分子动力学模拟.模拟结果显示,不含表面活性剂的体系迅速发生水油相分离,且分离过程伴随着势能的明显下降;含有表面活性剂的体系中,在相同时间内通过模拟得到了稳定的、表面活性剂分子包裹油分子的胶粒.对不同温度下模拟得到的数据分析发现,胶粒形成初期的动力学特征可以近似地表达为二级反应,聚集活化能为14.6kJ/mol. 相似文献
12.
13.
Michael Langeloth Taisuke Sugii Michael C. Böhm Florian Müller-Plathe 《Soft Materials》2014,12(4):S71-S79
Mesoscale molecular dynamics simulations are performed to analyze the curing process of an epoxy resin with polyfunctional amines on a generic surface. The coarse grained potentials were derived from all-atomistic molecular dynamics simulations using iterative Boltzmann inversion. The reactive scheme incorporates cross-linking between an epoxy resin and an amine, as well as amine adsorption on the surface. The structure of the cured network is examined and compared with equilibrium properties of the uncured system. Special attention has been paid on the implications of the surface that is believed to play a crucial role in the performance of epoxy systems. 相似文献
14.
15.
16.
17.
Praprotnik M Hocevar S Hodoscek M Penca M Janezic D 《Journal of computational chemistry》2008,29(1):122-129
A force field of the triclinic framework of AlPO(4)-34, important in methanol-hydrocarbon conversion reactions, was developed using an empirical potential function. Molecular dynamics simulation of an AlPO(4)-34 triclinic framework segment of 1216 atoms, containing the template molecules isopropylamine and water, was performed with explicit consideration of atomic charges. The average RMS difference between instantaneous positions of the framework atoms during 1 ns simulation and their positions in the structure determined from single crystal X-ray diffraction was calculated, and the average structure of the flexible framework was determined. The computed Debye-Waller factors and simulated FTIR spectra are in good agreement with the experimental data. The new force field permits detailed molecular dynamics simulations of flexible, charged aluminophosphate molecular sieves which should lead to a better understanding of the catalytic processes and the crucial role played by templating molecules. 相似文献
18.
19.
《Journal of Polymer Science.Polymer Physics》2018,56(7):604-612
A mesoscopic model of poly(lactic acid) is developed where the polymer is represented as an A‐graft‐B chain with monomer units consisting of two covalently connected beads. A coarse‐graining algorithm is proposed to convert an atomistic model of PLA into a coarse‐grained one. The developed model is based on atomistic simulations of oligolactides to take into account terminal groups correctly. It was used for coarse‐grained simulations of polylactide. Gyration radii and end to end distances of polymer chains as well as the density of the polymer melt are shown to be in a good agreement with those obtained from atomistic simulations. The thermal expansion coefficients of the OLA melts calculated using the coarse‐grained model are in reasonable agreement with those obtained from all‐atom molecular dynamics. The model provides a 17‐fold speedup compared with atomistic calculations. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018 , 56, 604–612 相似文献