首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 309 毫秒
1.
This review covers recent advances in the development of new designs of electrochemical sensors and biosensors that make use of electrode surfaces modification with carbon nanotubes. Applications based on carbon nanotubes-driven electrocatalytic effects, and the construction and analytical usefulness of new hybrid materials with polymers or other nanomaterials will be treated. Moreover, electrochemical detection using carbon nanotubes-modified electrodes as detecting systems in separation techniques such as high performance liquid chromatography (HPLC) or capillary electrophoresis (CE) will be also considered. Finally, the preparation of electrochemical biosensors, including enzyme electrodes, immunosensors and DNA biosensors, in which carbon nanotubes play a significant role in their sensing performance will be separately considered.  相似文献   

2.
Applications of Carbon Nanotubes in Electrochemical DNA Biosensors   总被引:1,自引:0,他引:1  
The discovery of carbon nanotubes (CNTs) about a decade ago has brought fascinating evolutions in electronics, material industry, as well as bio-techniques for DNA analysis, gene therapy, drug delivery etc. It has also dramatically promoted the development of DNA biosensing techniques, especially electrochemical DNA biosensor. The application of CNTs in electrochemical DNA biosensors includes two main aspects: on one hand, using CNTs as a novel substrate not only enables immobilization of DNA molecules but also serves as a powerful amplifier to amplify signal transduction event of DNA hybridization. On the other hand, CNTs can also be employed as a powerful carrier to pre-concentrate enzymes or electroactive molecules for electrochemical sensing of DNA hybridization as a novel indicator. In this review, we place emphasis on recent studies of CNTs-based electrochemical DNA biosensors based on these two aspects, with advantages and disadvantages of each aspect introduced herein.  相似文献   

3.
Electrochemical biosensors are an increasingly attractive option for the development of a novel analyte detection method, especially when integration within a point-of-use device is the overall objective. In this context, accuracy and sensitivity are not compromised when working with opaque samples as the electrical readout signal can be directly read by a device without the need for any signal transduction. However, electrochemical detection can be susceptible to substantial signal drift and increased signal error. This is most apparent when analysing complex mixtures and when using small, single-use, screen-printed electrodes. Over recent years, analytical scientists have taken inspiration from self-referencing ratiometric fluorescence methods to counteract these problems and have begun to develop ratiometric electrochemical protocols to improve sensor accuracy and reliability. This review will provide coverage of key developments in ratiometric electrochemical (bio)sensors, highlighting innovative assay design, and the experiments performed that challenge assay robustness and reliability.  相似文献   

4.
Aptamers are short length, single-stranded DNA or RNA affinity molecules which interact with any desired targets such as biomarkers, cells, biological molecules, drugs or chemicals with high sensitivity. They have been extensively employed for medical applications due to having more advantages than the antibodies such as easier preparation and modification, higher stability, lower batch-to-batch variability and cost. Moreover, aptamers can be easily integrated efficiently with sensors, biosensors, actuators and other devices. In this review article, different applications of aptamers for biological and chemical molecules detection within the scope of electrochemical methods were presented with recent studies. In addition, the present status and future perspectives for highly-effective aptasensors for specific and selective analyte detection were discussed. As in stated throughout the review, combining of extraordinary properties of aptamers with the electrochemical-based biosensors could have improved the sensitivity of the assay and reduced limit of detection.  相似文献   

5.
电化学DNA生物传感器*   总被引:1,自引:0,他引:1  
张炯  万莹  王丽华  宋世平  樊春海 《化学进展》2007,19(10):1576-1584
对特异DNA序列的检测在基因相关疾病的诊断、军事反恐和环境监测等方面均具有非常重要的意义,DNA传感器的研究就是为了满足对特异DNA序列的快速、便捷、高灵敏度和高选择性检测的需要。近年来涌现出了多种传感策略,根据检测方法的不同可以大致分为光学传感器、电化学传感器、声学传感器等。由于电化学检测方法本身所具有的灵敏、快速、低成本和低能耗等特点,电化学DNA传感器已成为一个非常活跃的研究领域并在近几年中得到了快速发展。本文概括了近年来在DNA传感器的重要分支——电化学DNA传感器领域内的一些重要进展,主要包括DNA探针在传感界面上的固定方法和各种电化学DNA杂交信号的检测方法。  相似文献   

6.
Cell-based biosensors, bioelectronic portable devices containing plant living cells have been used for monitoring some physiological changes induced by pathogen-derived signal molecules called flagellin. The screen-printed electrodes have been adapted for preparation of biosensors. The proton-sensitive thick films have been printed using composite bulk modified with edition of RuO(2). Obtained disposable electrodes were made possible to measure the pH change with well sensitivity and reproducibility. Tobacco cells attached to the electrode surface, cell-based biosensor, can be used for the detection of flagellin, the virulence factor of bacterial pathogen. We culture tobacco cells on the surface of such electrotransducer for several weeks and monitor of potential of cells under flagellin stimulation. The detection of the electrochemical proton gradient across the plasma membrane serves as the analytical signal. The electrode response depended upon H(+) concentration in extracellular solution. It can be conveniently observed on the surfaces of biosensors. Suitable stability and the good response time of constructed biosensors were observed. Future development of these cell-based biosensors could draw advances in selective monitoring of microbial pathogens and other physiologically active components. Moreover, this new method is much faster compared with the traditional microbial testing.  相似文献   

7.
Odenthal KJ  Gooding JJ 《The Analyst》2007,132(7):603-610
Electrochemical DNA biosensors exploit the affinity of single-stranded DNA for complementary strands of DNA and are used in the detection of specific sequences of DNA with a view towards developing portable analytical devices. Great progress has been made in this field but there are still numerous challenges to overcome. This review for researchers new to the field describes the components of electrochemical DNA biosensors and the important issues in their design. Methods of transducing DNA binding events are discussed along with future directions for DNA biosensors.  相似文献   

8.
Development of electrochemical DNA hybridization biosensors based on carbon paste electrode (CPE) and gold nanoparticle modified carbon paste electrode (NGMCPE) as transducers and ethyl green (EG) as a new electroactive label is described. Electrochemical impedance spectroscopy and cyclic voltammetry techniques were applied for the investigation and comparison of bare CPE and NGMCPE surfaces. Our voltammetric and spectroscopic studies showed gold nanoparticles are enable to facilitate electron transfer between the accumulated label on DNA probe modified electrode and electrode surface and enhance the electrical signals and lead to an improved detection limit. The immobilization of a 15‐mer single strand oligonucleotide probe on the working electrodes and hybridization event between the probe and its complementary sequence as a target were investigated by differential pulse voltammetry (DPV) responses of the EG accumulated on the electrodes. The effects of some experimental variables on the performance of the biosensors were investigated and optimum conditions were suggested. The selectivity of the biosensors was studied using some non‐complementary oligonucleotides. Finally the detection limits were calculated as 1.35×10?10 mol/L and 5.16×10?11 mol/L on the CPE and NEGCPE, respectively. In addition, the biosensors exhibited a good selectivity, reproducibility and stability for the determination of DNA sequences.  相似文献   

9.
Functionalized carbon nanotubes and nanofibers for biosensing applications   总被引:3,自引:0,他引:3  
This review summarizes recent advances in electrochemical biosensors based on carbon nanotubes (CNTs) and carbon nanofibers (CNFs) with an emphasis on applications of CNTs. CNTs and CNFs have unique electric, electrocatalytic and mechanical properties, which make them efficient materials for developing electrochemical biosensors.We discuss functionalizing CNTs for biosensors. We review electrochemical biosensors based on CNTs and their various applications (e.g., measurement of small biological molecules and environmental pollutants, detection of DNA, and immunosensing of disease biomarkers). Moreover, we outline the development of electrochemical biosensors based on CNFs and their applications. Finally, we discuss some future applications of CNTs.  相似文献   

10.
《Analytical letters》2012,45(8):783-803
Recent trends and challenges in developing carbon nanotubes (CNT) based sensors and biosensors for the detection of organophosphate (OP) pesticides and other organic pollutants in water are reviewed. CNT have superior electrical, mechanical, chemical, and structural properties over conventional materials such as graphite. At the same time CNT based sensors and biosensors are more efficient compared to the existing traditional techniques such as high-performance liquid chromatography or gas chromatography, because they can provide rapid, sensitive, simple, and low-cost on-field detection. The measurement protocols can be based on enzymatic and non-enzymatic detection. The enzyme acetylcholinesterase (AChE) is used with CNT for fabricating ultrasensitive biosensors for OP detection involving different immobilization schemes such as adsorption, crosslinking, and layer-by-layer self-assembly. This protocol relies on measuring the degree of enzyme inhibition as means of OP quantification. The other enzyme used along with CNT for OP detection is organophosphate hydrolase (OPH) which hydrolyzes the OP into detectable species that can be measured by amperometric or potentiometric methods. Different forms of CNT electrode materials can be used for fabricating such electrodes such as pure CNT and composite CNT. Due to their large surface area and hydrophobicity, CNT have also been used for the extraction and non-enzymatic electrochemical detection of OP with very high efficiency. The application of CNT and their novel properties for the adsorption and electrochemical detection of OP compounds is discussed in detail.  相似文献   

11.
MXenes are recently developed two-dimensional layered materials composed of early transition metal carbides and/or nitrides that provide unique characteristics for biosensor applications. This review presents the recent progress made on the usage and applications of MXenes in the field of electrochemical biosensors, including microfluidic biosensors and wearable microfluidic biosensors, and highlights the challenges with possible solutions and future needs. The multilayered configuration and high conductivity make these materials as an immobilization matrix for the biomolecule immobilization with activity retention and to be explored in the fabrication of electrochemical sensors, respectively. First, how the MXene nanocomposite as an electrode modifier affects the sensing performance of the electrochemical biosensors based on enzymes, aptamer/DNA, and immunoassays is well described. Second, recent developments in MXene nanocomposites as wearable biosensing platforms for the biomolecule detection are highlighted. This review pointed out the future concerns and directions for the use of MXene nanocomposites to fabricate advanced electrochemical biosensors with high sensitivity and selectivity. Specifically, possibilities for developing microfluidic electrochemical sensors and wearable electrochemical microfluidic sensors with integrated biomolecule detection are emphasized.  相似文献   

12.
Motivated by the potential of electrochemical techniques to analyze hybridization events fast and in a simple and cost‐effective way we present here a detection system allowing a parallel electrochemical DNA analysis. For this purpose different probe DNA strands have been immobilized on one electrode. By the use of two different target DNA sequences, both marked with the redox active methylene blue, we can show that hybridization with the complementary probe sh“NA strands can occur without steric hindrance. Each target has been recognized down to 3nM with a very high specificity of the sensor. In addition, we can detect two different ssDNA targets labeled with different redox active molecules, methylene blue and ferrocene, on one sensor surface simultaneously.  相似文献   

13.
《Electroanalysis》2005,17(1):7-14
This review addresses recent advances in carbon‐nanotubes (CNT) based electrochemical biosensors. The unique chemical and physical properties of CNT have paved the way to new and improved sensing devices, in general, and electrochemical biosensors, in particular. CNT‐based electrochemical transducers offer substantial improvements in the performance of amperometric enzyme electrodes, immunosensors and nucleic‐acid sensing devices. The greatly enhanced electrochemical reactivity of hydrogen peroxide and NADH at CNT‐modified electrodes makes these nanomaterials extremely attractive for numerous oxidase‐ and dehydrogenase‐based amperometric biosensors. Aligned CNT “forests” can act as molecular wires to allow efficient electron transfer between the underlying electrode and the redox centers of enzymes. Bioaffinity devices utilizing enzyme tags can greatly benefit from the enhanced response of the biocatalytic‐reaction product at the CNT transducer and from CNT amplification platforms carrying multiple tags. Common designs of CNT‐based biosensors are discussed, along with practical examples of such devices. The successful realization of CNT‐based biosensors requires proper control of their chemical and physical properties, as well as their functionalization and surface immobilization.  相似文献   

14.
《Electroanalysis》2006,18(2):163-168
Nanostructured films were deposited at the surface of working electrode of the screen‐printed assembly and utilized for the surface modification with double‐stranded DNA. The basic electrochemical properties of the sensors were investigated using voltammetric methods. Modified electrodes were also characterized by scanning electron microscopy and electrochemical impedance measurements. It was found that the electrode modification with DNA and nanomodifier leads to an enhanced sensitivity of the DNA voltammetric detection. New potentialities of the utilization of the K3[Fe(CN)6] cyclic voltammetric signal and electrochemical impedance spectroscopy were found. The DNA‐based biosensors showed good repeability and necessary stability within several days.  相似文献   

15.
This review presents the state of the art of DNA sensors (or genosensors) that utilize electrochemical impedance spectroscopy as the transduction technique. As issue of current interest, it is centered on the use of nanomaterials to develop or to improve performance of these specific biosensors. It will describe the different principles that may be employed in the measuring step and the different formats adopted for detection of a DNA sequence or confirmation or amplification of the finally obtained signal. The use of nanomaterials for the above listed aspects, viz. the use of carbon nanotubes or other nanoscopic elements in the construction of the electrodes, or the use of nanoparticles, mainly gold or quantum dots, for signal enhancement will be fully revised.  相似文献   

16.
Electrochemical biosensors are particularly suitable for miniaturization and integration in microfluidic devices. Applications include the detection of whole cells, cell components, proteins, and small molecules to address tasks in the fields of diagnostics and food and environmental control. Microfluidic setups range from simple channels for sample transport to channels with integrated sensing electrodes to highly sophisticated platforms with additional elements for sample preparation. The design of the microfluidics depends on both the type of detection and on the application and sample material. This review summarizes recent work on electrochemical biosensors with integrated microfluidics with the focus on developments for real sample applications, particularly those including measurements with real sample media.  相似文献   

17.
A general approach is described for the de novo design and construction of aptamer-based electrochemical biosensors, for potentially any analyte of interest (ranging from small ligands to biological macromolecules). As a demonstration of the approach, we report the rapid development of a made-to-order electronic sensor for a newly reported early biomarker for lung cancer (CTAP III/NAP2). The steps include the in vitro selection and characterization of DNA aptamer sequences, design and biochemical testing of wholly DNA sensor constructs, and translation to a functional electrode-bound sensor format. The working principle of this distinct class of electronic biosensors is the enhancement of DNA-mediated charge transport in response to analyte binding. We first verify such analyte-responsive charge transport switching in solution, using biochemical methods; successful sensor variants were then immobilized on gold electrodes. We show that using these sensor-modified electrodes, CTAP III/NAP2 can be detected with both high specificity and sensitivity (K(d) ~1 nM) through a direct electrochemical reading. To investigate the underlying basis of analyte binding-induced conductivity switching, we carried out F?rster Resonance Energy Transfer (FRET) experiments. The FRET data establish that analyte binding-induced conductivity switching in these sensors results from very subtle structural/conformational changes, rather than large scale, global folding events. The implications of this finding are discussed with respect to possible charge transport switching mechanisms in electrode-bound sensors. Overall, the approach we describe here represents a unique design principle for aptamer-based electrochemical sensors; its application should enable rapid, on-demand access to a class of portable biosensors that offer robust, inexpensive, and operationally simplified alternatives to conventional antibody-based immunoassays.  相似文献   

18.
基于核酸适体的电化学生物传感器*   总被引:3,自引:0,他引:3  
核酸适体是一类体外筛选的、可与目标分子高效、高特异亲合的RNA或DNA寡核苷酸片段,与常规识别分子(如抗体等)相比,核酸适体作为一类新型识别分子具有明显特色和优势,已被广泛应用于生物传感等分子识别和应用研究领域。本文就基于核酸适体的电化学生物传感器(标记型和非标记型)的近期进展作简要评述,包括适体简介、标记型(“信号衰减”型、“信号增强”型、酶标记型和纳米粒子标记型)和非标记型电化学适体生物传感器等内容。  相似文献   

19.
本文介绍了近年来纳米材料电化学与生物传感器在有机微污染物检测中的研究现状,分析了这些传感器中纳米材料修饰电极的特点,重点阐述了纳米材料在有机微污染物检测中的重要作用,列举了一些纳米材料电化学与生物传感器在有机微污染物检测中的应用。最后对纳米材料电化学与生物传感器用于有机微污染物的检测研究进行了简要评述和展望。  相似文献   

20.
Carbon nanotubes (CNTs) have been incorporated in electrochemical sensors to decrease overpotential and improve sensitivity. In this review, we focus on recent literature that describes how CNT-based electrochemical sensors are being developed to detect neurotransmitters, proteins, small molecules such as glucose, and DNA. Different types of electrochemical methods are used in these sensors including direct electrochemical detection with amperometry or voltammetry, indirect detection of an oxidation product using enzyme sensors, and detection of conductivity changes using CNT-field effect transistors (FETs). Future challenges for the field include miniaturizing sensors, developing methods to use only a specific nanotube allotrope, and simplifying manufacturing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号