首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Heme proteins bind the gaseous ligands XO (X = C, N, O) via backbonding from Fe d(pi) electrons. Backbonding is modulated by distal interactions of the bound ligand with the surrounding protein and by variations in the strength of the trans proximal ligand. Vibrational modes associated with FeX and XO bond stretching coordinates report on these interactions, but the interpretive framework developed for CO adducts, involving anticorrelations of nuFeC and nuCO, has seemed not to apply to NO adducts. We have now obtained an excellent anticorrelation of nuFeN and nuNO, via resonance Raman spectroscopy on (N-methylimidazole)Fe(II)TPP-Y(NO), where TPP-Y is tetraphenylporphine with electron-donating or -withdrawing substituents, Y, that modulate the backbonding; the problem of laser-induced dissociation of the axial base was circumvented by using frozen solutions. New data are also reported for CO adducts. The anticorrelations are supported by DFT calculations of structures and spectra. When protein data are examined, the NO adducts show large deviations from the modeled anticorrelation when there are distal H-bonds or positive charges. These deviations are proposed to result from closing of the FeNO angle due to a shift in the valence isomer equilibrium toward the Fe(III)(NO-) form, an effect that is absent in CO adducts. The differing vibrational patterns of CO and NO adducts provide complementary information with respect to protein interactions, which may help to elucidate the mechanisms of ligand discrimination and signaling in heme sensor proteins.  相似文献   

2.
Abstract— Raman spectra of inorganic complexes in excited electronic states are discussed. A brief overview of the field of transient Raman spectroscopy and experimental considerations are presented. Two examples from the author's laboratory are used to illustrate the type of information that can be obtained. The first example, an excited-state Raman spectroscopic study of K3[Mn(CN)5NO], is chosen because it illustrates the connections between excited-state molecular structure and vibrational properties. The pump pulse causes a change from a linear sp-hybridized NO containing a triple bond to a bent sp2-hybridized NO containing a double bond. Both the NO stretch and normal modes involving other ligands are measured and interpreted. The second example is chosen to illustrate the vibrational consequences of photoinduced electron transfer. The Raman spectra of W(CO)4(diimine) complexes (diimine = 2,2'-bipyridine, 4,4'-dimethyl-2,2'-bipyridine, and isopropyl-pyridine-2-carbaldehyde imine) in the lowest tungsten to diimine charge transfer excited state are discussed. The excited-state peaks are assigned to ligand ring deformation modes and to carbonyl stretching modes. The totally symmetric cis -carbonyl stretching mode in the charge transfer excited state is about 50 cm' higher in energy than that of the molecule in the ground electronic state. The increase is interpreted in terms of loss of metal-car-bonyl back-bonding in the charge transfer excited state. Finally, a summary of the field's strengths and difficulties and a brief discussion of the future perspectives are presented.  相似文献   

3.
在B3LYP/6-311G(d,p)和CCSD(T)/6-311G(d,p)水平上给出了HCO+NO2反应详细的势能面信息.计算结果表明,该反应采用两种无垒进攻方式,分别得到两种加合物H(O)CNO2和H(O)CONO.找到7种能量低于反应物且合理的产物及相应的反应路径.通过对热力学和动力学的分析,产物HONO+CO(P2,P3),HNO+CO2(P1)和H+CO2+NO(P6)的形成更为有利.计算结果同实验相符,且有助于深入了解HCO自由基的化学行为.  相似文献   

4.
Laser-ablated U atoms co-deposited with CO in excess neon produce the novel CUO molecule, which forms distinct Ng complexes (Ng=Ar, Kr, Xe) with the heavier noble gases. The CUO(Ng) complexes are identified through CO isotopic and Ng reagent substitution and comparison to results of DFT frequency calculations. The U[bond]C and U[bond]O stretching frequencies of CUO(Ng) complexes are slightly red-shifted from neon matrix (1)Sigma(+) CUO values, which indicates a (1)A' ground state for the CUO(Ng) complexes. The CUO(Ng)(2) complexes in excess neon are likewise singlet molecules. However, the CUO(Ng)(3) and CUO(Ng)(4) complexes exhibit very different stretching frequencies and isotopic behaviors that are similar to those of CUO(Ar)(n) in a pure argon matrix, which has a (3)A" ground state based on DFT vibrational frequency calculations. This work suggests a coordination sphere model in which CUO in solid neon is initially solvated by four or more Ne atoms. Up to four heavier Ng atoms successively displace the Ne atoms leading ultimately to CUO(Ng)(4) complexes. The major changes in the CUO stretching frequencies from CUO(Ng)(2) to CUO(Ng)(3) provides evidence for the crossover from a singlet ground state to a triplet ground state.  相似文献   

5.
The atmospherically and environmentally important reaction of chlorinated vinyl radical with nitrogen dioxide (C 2Cl 3 + NO 2) is investigated by step-scan time-resolved Fourier transform infrared emission spectroscopy and electronic structure calculations. Vibrationally excited products of CO, NO, Cl 2CO, and NO 2 are observed in the IR emission spectra. Geometries of the major intermediates and transition states along the potential energy surface are optimized at the B3LYP/6-311G(d) level, and their energies are refined at the CCSD(T)/6-311+G(d) level. The reaction mechanisms are characterized to be barrierless addition-elimination via nitro (C 2Cl 3-NO 2) and nitrite (C 2Cl 3-ONO) adducts. Four energetically accessible reaction routes are revealed, i.e., the decomposition of the nitrite adduct forming C 2Cl 3O + NO and its sequential dissociation to CO + NO + CCl 3, the elimination of ClNO from the nitrite adduct leading to ClNO + Cl 2CCO, the Cl-atom shift of the nitrite adduct followed by the decomposition to CCl 3CO + NO, and the O-atom shift of the nitro adduct followed by C-C bond cleavage forming ClCNO + Cl 2CO. In competition with these reactive fluxes, the back-decomposition of nitro or nitrite adducts leads to the prompt formation of vibrationally excited NO 2 and the long-lived reaction adducts facilitate the vibrational energy transfer. Moreover, the product channels and mechanisms of the C 2Cl 3 + NO 2 reaction are compared with the C 2H 3 + NO 2 reaction to explore the effect of chlorine substitution. It is found that the two reactions mainly differ in the initial addition preferentially by the N-attack forming nitro adducts (only N-attack is plausible for the C 2H 3 + NO 2 reaction) or the O-attack forming nitrite adducts (O-attack is slightly more favorable and N-attack is also plausible for the C 2Cl 3 + NO 2 reaction). The addition selectivity can be fundamentally correlated to the variation of the charge density of the end carbon atom of the double bond induced by chlorine substitution due to the electron-withdrawing effect of chlorine groups.  相似文献   

6.
The potential energy surfaces (PESs) and associated energy barriers that characterize the spin-forbidden recombination reactions of the gas-phase ferrous deoxy-heme group with CO, NO, and H2O ligands have been calculated using density functional theory (DFT). The bond energy for binding of O2 has also been calculated. Extensive large basis set CCSD(T) calculations on two small models of the heme group have been used to calibrate the accuracy of different DFT functionals for treating these systems. Pure functionals are shown to overestimate the stability of the low-spin forms of the deoxy-heme model, and to overestimate the binding energy of H2O and CO, whereas hybrid functionals such as B3PW91 and B3LYP yield accurate results. Accordingly, the latter functionals have been used to explore the PESs for binding. CO binding is found to involve a significant barrier of ca. 3 kcal mol-1 due to the need to change from the deoxy-heme quintet ground state to the bound singlet state. Binding of water does not involve a barrier, but the resulting bond is weak and may be further weakened in the protein environment, which should explain why water binding is not usually observed in heme proteins such as myoglobin. NO binding involves a low barrier, which is consistent with observed rapid geminate recombination. The calculated bond energies are in good agreement with previous reported values and in fair agreement with experiment for CO and O2. The value for NO is significantly lower than the experimentally derived bond energy, suggesting that B3LYP is less accurate in this case.  相似文献   

7.
在CCSD(T)/6-311G(d,p)//MP2/6-311G(d,p)+ZPE水平上对反应HCCO+NO2进行了计算, 建立了反应势能面. 此反应由反应物通过三步反应到达产物. 首先, NO2的O原子进攻HCCO自由基中与H相邻的C原子, 形成异构体1[ONOC(H)CO]或2[H(CONOC)O]. 然后, 异构体1和2通过N-O键的断裂形成产物NO和OC(H)CO. 最后, 产物中的OC(H)CO可以通过C-C键的断裂进一步分解为HCO和CO. 由HCCO+NO2反应得到产物NO+HCO+CO.  相似文献   

8.
The vibrational spectrum of a six‐coordinate nitrosyl iron porphyrinate, monoclinic [Fe(TpFPP)(1‐MeIm)(NO)] (TpFPP=tetra‐para‐fluorophenylporphyrin; 1‐MeIm=1‐methylimidazole), has been studied by oriented single‐crystal nuclear resonance vibrational spectroscopy (NRVS). The crystal was oriented to give spectra perpendicular to the porphyrin plane and two in‐plane spectra perpendicular or parallel to the projection of the FeNO plane. These enable assignment of the FeNO bending and stretching modes. The measurements reveal that the two in‐plane spectra have substantial differences that result from the strongly bonded axial NO ligand. The direction of the in‐plane iron motion is found to be largely parallel and perpendicular to the projection of the bent FeNO on the porphyrin plane. The out‐of‐plane Fe‐N‐O stretching and bending modes are strongly mixed with each other, as well as with porphyrin ligand modes. The stretch is mixed with v50 as was also observed for dioxygen complexes. The frequency of the assigned stretching mode of eight Fe‐X‐O (X=N, C, and O) complexes is correlated with the Fe?XO bond lengths. The nature of highest frequency band at ≈560 cm?1 has also been examined in two additional new derivatives. Previously assigned as the Fe?NO stretch (by resonance Raman), it is better described as the bend, as the motion of the central nitrogen atom of the FeNO group is very large. There is significant mixing of this mode. The results emphasize the importance of mode mixing; the extent of mixing must be related to the peripheral phenyl substituents.  相似文献   

9.
Model ferric heme nitrosyl complexes, [Fe(TPP)(NO)](+) and [Fe(TPFPP)(NO)](+), where TPP is the dianion of 5,10,15,20-tetrakis-phenyl-porphyrin and TPFPP is the dianion of 5,10,15,20-tetrakis-pentafluorophenyl-porphyrin, have been obtained as isolated species by the gas phase reaction of NO with [Fe(III)(TPP)](+) and [Fe(III) (TPFPP)](+) ions delivered in the gas phase by electrospray ionization, respectively. The so-formed nitrosyl complexes have been characterized by vibrational spectroscopy also exploiting (15)N-isotope substitution in the NO ligand. The characteristic NO stretching frequency is observed at 1825 and 1859 cm(-1) for [Fe(III)(TPP)(NO)](+) and [Fe(III)(TPFPP)(NO)](+) ions, respectively, providing reference values for genuine five-coordinate Fe(III)(NO) porphyrin complexes differing only for the presence of either phenyl or pentafluorophenyl substituents on the meso positions of the porphyrin ligand. The vibrational assignment is aided by hybrid density functional theory (DFT) calculations of geometry and electronic structure and frequency analysis which clearly support a singlet spin electronic state for both [Fe(TPP)(NO)](+) and [Fe(TPFPP)(NO)](+) complexes. Both TD-DFT and CASSCF calculations suggest that the singlet ground state is best described as Fe(II)(NO(+)) and that the open-shell AFC bonding scheme contribute for a high-energy excited state. The kinetics of the NO addition reaction in the gas phase are faster for [Fe(III)(TPFPP)](+) ions by a relatively small factor, though highly reliable because of a direct comparative evaluation. The study was aimed at gaining vibrational and reactivity data on five-coordinate Fe(III)(NO) porphyrin complexes, typically transient species in solution, ultimately to provide insights into the nature of the Fe(NO) interaction in heme proteins.  相似文献   

10.
Cr(CO)n (n = 1-6) systems were studied for all possible spin states using density functional and high-level ab initio methods to provide a more complete theoretical understanding of the structure of species that may form during ligand dissociation of Cr(CO)6. We carried out geometry optimizations for each system and obtained vibrational frequencies, sequential bond dissociation energies (BDE), and total CO binding energies. We also compared the performance of various DFT functionals. Generally, the ground states of Cr(CO)6, Cr(CO)5, and Cr(CO)4, whose spin multiplicity is a singlet, are in good agreement with both previous theoretical results and currently available experimental data. Calculations on Cr(CO)3, Cr(CO)2, and CrCO provide new findings that the ground state of Cr(CO)3 might be a quintet with C2v symmetry instead of a singlet with C3v symmetry, and the ground state of Cr(CO)2 is not a linear quintet, as suggested by previous DFT calculations, but rather a linear septet. We also found that nonet states of Cr(CO)2 and CrCO display partial C-O bond breakage.  相似文献   

11.
The biochemical and physiological importance of nitric oxide (NO) in signaling and vasodilation has been studied for several decades. The discovery of both protein-bound and free low molecular weight dinitrosyl iron complexes (DNICs) suggests that such compounds might play roles in biological NO storage and transport. These complexes have important distinguishing spectroscopic features, including EPR and M?ssbauer spectra, and NO vibrational frequencies (ν((NO))). The latter are particularly sensitive to modifications of the ligand environment and metal oxidation states. Examinations of functionals and basis sets delineate their effect on the NO vibrational frequencies and allow development of a methodology to calculate these frequencies in other DNICs. Three complexes of the form (L)(CO)Fe(NO)(2) (L = CO, N,N'-dimethyl-imidazol-2-ylidene (IMe) or 1-methylimidazole (MeImid)), where {Fe(NO)(2)}(10) is in its reduced form, have been used to calibrate the vibrational frequencies. The functional BP86 paired with a basis set of SDD/ECP on the metal and 6-311++G(d,p) on the ligand atoms exhibits the most accurate results, with deviations from experimental vibrational frequencies of no more than ±40 cm(-1). Subsequent investigations were performed on a series of diiron trinitrosyl complexes of the form {Fe(NO)}(7)-{Fe(NO)(2)}(9) bridged by sulfurs, namely, [(ON)Fe(μ-S,S-C(6)H(4))(2)Fe(NO)(2)](-), [Fe(NO)(2){Fe(NS(3))(NO)}-μ-S,S'], and [(ON)Fe(bme-dach)Fe(NO)(2)-μ-S,S'](+), with the ideal functional/basis set pair determined via the aforementioned test set. The ground state energetics (singlet/triplet/singlet, respectively), geometric parameters, and nitrosyl vibrational frequencies were calculated. The results for the former two complexes correlated well with the experimental work, and in contrast with what was reported in an earlier computational study, a stable triplet ground state structure was optimized for [Fe(NO)(2){Fe(NS(3))(NO)}-μ-S,S']. For [(ON)Fe(bme-dach)Fe(NO)(2)-μ-S,S'](+), whose synthesis and structure were recently reported, the geometric parameters, vibrational frequencies, and total energies compare well to experimental ones and favor a singlet ground state.  相似文献   

12.
Cundari TR  Dinescu A  Kazi AB 《Inorganic chemistry》2008,47(21):10067-10072
Copper nitrenes are of interest as intermediates in the catalytic aziridination of olefins and the amination of C-H bonds. However, despite advances in the isolation and study of late-transition-metal multiply bonded complexes, a bona fide structurally characterized example of a terminal copper nitrene has, to our knowledge, not been reported. In anticipation of such a report, terminal copper nitrenes are studied from a computational perspective. The nitrene complexes studied here are of the form (beta-diketiminate)Cu(NPh). Density functional theory (DFT), complete active space self-consistent-field (CASSCF) electronic structure techniques, and hybrid quantum mechanical/molecular mechanical (QM/MM) methods are employed to study such species. While DFT methods indicate that a triplet (S = 1) is the ground state, CASSCF calculations indicate that a singlet (S = 0) is the ground state, with only a small energy gap between the singlet and triplet. Moreover, the ground-state (open-shell) singlet copper nitrene is found to be highly multiconfigurational (i.e., biradical) and to possess a bent geometry about the nitrene nitrogen, contrasting with the linear nitrene geometry of the triplet copper nitrenes. CASSCF calculations also reveal the existence of a closed-shell singlet state with some degree of multiple bonding character for the copper-nitrene bond.  相似文献   

13.
Electronic factors essential for NO activation by Cu(I) sites in zeolites are investigated within spin-resolved analysis of electron transfer channels (natural orbitals for chemical valence). NOCV analysis is performed for three DFT-optimized models of Cu(I)?CNO site in ZSM-5: [CuNO]+, (T1)CuNO, and (M7)CuNO. NO as a non-innocent, open-shell ligand reveals significant differences between independent deformation density components for ?? and ?? spins. Four distinct components are identified: (i) unpaired electron donation from NO ????* antibonding orbital to Cus,d; (ii) backdonation from copper d yz to ????* antibonding orbital; (iii) donation from occupied ???? and Cu d xz to bonding region, and (iv) donation from nitrogen lone-pair to Cus,d. Channel (i), corresponding to one-electron bond, shows-up solely for spin majority and is effective only in the interaction of NO with naked Cu+. Channel (ii) dominates for models b and c: it strongly activates NO bond by populating antibonding ??* orbital and weakens the N?CO bond in contrast to channel (i), depopulating the antibonding orbital and strengthening N?CO bond. This picture perfectly agrees with IR experiment: interaction with naked Cu+ imposes small blue-shift of NO stretching frequency while it becomes strongly red-shifted for Cu(I) site in ZSM-5 due to enhanced backdonation.  相似文献   

14.
A neutral boron carbonyl complex B4(CO)3 is generated in the gas phase and is characterized by infrared plus vacuum ultraviolet (IR+VUV) two-color ionization spectroscopy and quantum chemical calculations. The complex is identified to have a planar C2v structure with three CO ligands terminally coordinated to a rhombus B4 core. It has a closed-shell singlet ground state that correlates to an excited state of B4. Bonding analyses on B4(CO)3 as well as the previously reported B4 and B4(CO)2 indicate that the electronic structure of rhombus tetraboron cluster changes from a close-shell singlet to an open-shell singlet in B4(CO)2 and to a close-shell singlet in B4(CO)3, demonstrating that the electronic structures of boron clusters can be effectively tuned via sequential CO ligand coordination.  相似文献   

15.
邻二氮杂苯-水复合物的氢键结构与性质   总被引:11,自引:2,他引:11  
用密度泛函理论B3LYP方法和MP2方法对邻二氮杂苯-水复合物基态的氢键结构与相互作用能进行了理论计算,结果表明复合物之间存在较强的氢键N…H-O.在复合物中,水的H-O对称伸缩振动频率明显红移.同时,使用含时密度泛函理论方法计算了邻二氮杂苯单体及复合物的低占据1(n,π*) 和1(π,π*) 态的垂直激发能,计算结果与实验值吻合较好.  相似文献   

16.
Li J  Bursten BE  Zhou M  Andrews L 《Inorganic chemistry》2001,40(21):5448-5460
Laser-ablated thorium atoms have been reacted with CO molecules during condensation in excess neon. Absorptions at 617.7 and 812.2 cm(-1) are assigned to Th-C and Th-O stretching vibrations of the CThO molecule. Absorptions at 2048.6, 1353.6, and 822.5 cm(-1) are assigned to the OThCCO molecule, which is formed by CO addition to CThO and photochemical rearrangement of Th(CO)(2). The OThCCO molecule undergoes further photoinduced rearrangement to OTh(eta(3)-CCO), which is characterized by C-C, C-O, and Th-O stretching vibrations at 1810.8, 1139.2, and 831.6 cm(-1). The Th(CO)(n) (n = 1-6) complexes are formed on deposition or on annealing. Evidence is also presented for the CThO(-) and Th(CO)(2)(-) anions, which are formed by electron capture of neutral molecules. Relativistic density functional theory (DFT) calculations of the geometry structures, vibrational frequencies, and infrared intensities strongly support the experimental assignments. It is found that CThO is an unprecedented actinide-containing carbene molecule with a triplet ground state and an unusual bent structure ( angleCThO = 109 degrees ). The OThCCO molecule has a bent structure while its rearranged product OTh(eta(3)-CCO) is found to have a unique exocyclic structure with side-bonded CCO group. We also find that both Th(CO)(2) and Th(CO)(2)(-) are, surprisingly, highly bent, with the angleC-Th-C bond angle being close to 50 degrees; the unusual geometries are the result of extremely strong Th-to-CO back-bonding, which causes significant three-centered bonding among the Th atom and the two C atoms.  相似文献   

17.
Cationic complexes of the type [M(CO)S(PPh(3))(2)](+) (M = Ir, Rh; S = CH(3)CN) react with singlet oxygen to form the corresponding peroxo complexes [M(CO)S(PPh(3))(2)(O(2))](+). The solvent molecule remains coordinated to the metal in the oxygen adducts. The novel cationic iridium-peroxo complex is stable at room temperature, while the rhodium-peroxo complex is only stable below 0 degrees C. Rate constants for physical and chemical interaction of the complexes with singlet oxygen are somewhat smaller than those for related neutral complexes. Upon addition of alkenes (tetramethylethylene or 1-octene) to the peroxo complexes, neither oxidation of the olefins nor substitution of the acetonitrile ligand was observed. 1-Octene was isomerized to give mostly 2- and 3-octene by the cationic rhodium(I) complex. A cationic iridium complex which already possesses a coordinated diene ligand ([Ir(COD)(PPh(3))(2)](+)) did not react with or quench singlet oxygen.  相似文献   

18.
Reactions of cerium with carbon monoxide molecules in solid argon have been studied using matrix isolation infrared absorption spectroscopy. The cerium carbonyls CeCO and Ce2CO are produced spontaneously on annealing and they are photochemically rearranged to the CCeO and c-Ce2(mu-C)(mu-O) isomers, where Ce and Ce2 are inserted into the CO triple bond. Theoretical calculations indicate that CeCO is an end-on-bonded carbonyl with a quintet ground state, whereas Ce2CO is a rare dinuclear lanthanide carbonyl complex with CO serving as an asymmetrically bridged, side-on ligand. The CCeO molecule was theoretically characterized to have a linear structure with a singlet ground state. Evidence is also presented for the CeCO- anion and other cerium carbonyls with higher coordination numbers.  相似文献   

19.
Zhou L  Li G  Li QS  Xie Y  King RB 《Inorganic chemistry》2011,50(24):12531-12538
Fluorophosphinidene (PF) is a versatile ligand found experimentally in the transient species M(CO)(5)(PF) (M = Cr, Mo) as well as the stable cluster Ru(5)(CO)(15)(μ(4)-PF). The PF ligand can function as either a bent two-electron donor or a linear four-electron donor with the former being more common. The mononuclear tetracarbonyl Fe(PF)(CO)(4) is predicted to have a trigonal bipyramidal structure analogous to Fe(CO)(5) but with a bent PF ligand replacing one of the equatorial CO groups. The tricarbonyl Fe(PF)(CO)(3) is predicted to have two low-energy singlet structures, namely, one with a bent PF ligand and a 16-electron iron configuration and the other with a linear PF ligand and the favored 18-electron iron configuration. Low-energy structures of the dicarbonyl Fe(PF)(CO)(2) have bent PF ligands and triplet spin multiplicities. The lowest energy structures of the binuclear Fe(2)(PF)(CO)(8) and Fe(2)(PF)(2)(CO)(7) derivatives are triply bridged structures analogous to the experimental structure of the analogous Fe(2)(CO)(9). The three bridges in each Fe(2)(PF)(CO)(8) and Fe(2)(PF)(2)(CO)(7) structure include all of the PF ligands. Other types of low-energy Fe(2)(PF)(2)(CO)(7) structures include the phosphorus-bridging carbonyl structure (FP)(2)COFe(2)(CO)(6), lying only ~2 kcal/mol above the global minimum, as well as an Fe(2)(CO)(7)(μ-P(2)F(2)) structure in which the two PF groups have coupled to form a difluorodiphosphene ligand unsymmetrically bridging the central Fe(2) unit.  相似文献   

20.
Theoretical model for vibrational interactions in the hydrogen-bonded dimer of benzoic acid is presented. The model takes into account anharmonic-type couplings between the high-frequency O-H and the low-frequency O[cdots, three dots, centered]O stretching vibrations in two hydrogen bonds, resonance interactions (Davydov coupling) between two hydrogen bonds in the dimer, and Fermi resonance between the O-H stretching fundamental and the first overtone of the O-H in-plane bending vibrations. The vibrational Hamiltonians and selection rules for the C(2h) geometry in the S(0) state and for the C(s) in-plane bent geometry in the S(1) state of the dimer are derived. The model is used for theoretical simulation of the O-H stretching IR absorption bands of benzoic acid dimers in the gas phase in the electronic ground and first excited singlet states. Ab initio CIS and CIS(D)6-311++G(d,p) calculations have been performed to determine geometry, frequencies, and excited state energies of benzoic acid dimer in the S(1) state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号