首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
We study a one-dimensional filamental model of a chaotically stirred excitable medium. In a numerical simulation we systematically explore its rich bifurcation scenarios involving saddle-nodes, Hopf bifurcations and hysteresis loops. The bifurcations are described in terms of two parameters signifying the excitability of the reacting medium and the strength of the chaotic stirring, respectively. The solution behaviour, in particular at the bifurcation points, is analytically described by means of a nonperturbative variational method. Using this method we reduce the partial differential equations to either algebraic equations for stationary solutions and bifurcations, or to ordinary differential equations in the case of non-stationary solutions and bifurcations. We present numerical simulations corroborating our analytical results.  相似文献   

2.
A system of coupled master equations simplified from a model of noise-driven globally coupled bistable oscillators under periodic forcing is investigated. In the thermodynamic limit, the system is reduced to a set of two coupled differential equations. Rich bifurcations to subharmonics and chaotic motions are found. This behavior can be found only for certain intermediate noise intensities. Noise with intensities which are too small or too large will certainly spoil the bifurcations. In a system with large though finite size, the bifurcations to chaos induced by noise can still be detected to a certain degree. Received 6 April 1999 and Received in final form 1 November 1999  相似文献   

3.
We perform a bifurcation analysis of a model of Ca2+ wave propagation in the basal region of pancreatic acinar cells. The model we consider was first presented in Sneyd et al. [J. Sneyd, K. Tsaneva-Atanasova, J.I.E. Bruce, S.V. Straub, D.R. Giovannucci, D.I. Yule, A model of calcium waves in pancreatic and parotid acinar cells, Biophys. J. 85 (2003) 1392–1405], where a partial bifurcation analysis was given of the model in the absence of diffusion. We obtain more complete information about bifurcations of the diffusionless model via numerical studies, then analyse the spatially extended model by numerical investigation of the travelling wave equations and direct numerical solution of the model equations. We find solitary waves in the model equations arising from homoclinic bifurcations in the travelling wave equations. The solitary waves exist and appear to be stable for a significant interval of the primary bifurcation parameter (i.e., the concentration of inositol trisphosphate) but are eventually replaced by irregular spatio-temporal behaviour. The homoclinic bifurcations are related to a number of complicated mathematical structures in the travelling wave equations, including an anomalous homoclinic-Hopf bifurcation, heteroclinic bifurcations between an equilibrium and a periodic orbit, and homoclinic bifurcations of periodic orbits.  相似文献   

4.
Physical and computer experiments involving systems describable by piecewise smooth continuous maps that are nondifferentiable on some surface in phase space exhibit novel types of bifurcations in which an attracting fixed point exists before and after the bifurcation. The striking feature of these bifurcations is that they typically lead to "unbounded behavior" of orbits as a system parameter is slowly varied through its bifurcation value. This new type of border-collision bifurcation is fundamental and robust. A method that prevents such "dangerous border-collision bifurcations" is given. These bifurcations may be found in a variety of experiments including circuits.  相似文献   

5.
We consider iterated maps with a reflectional symmetry. Possible bifurcations in such systems include period-doubling bifurcations (within the symmetric subspace) and symmetry-breaking bifurcations. By using a second parameter, these bifurcations can be made to coincide at a mode interaction. By reformulating the period-doubling bifurcation as a symmetry-breaking bifurcation, two bifurcation equations with Z2×Z2 symmetry are derived. A local analysis of solutions is then considered, including the derivation of conditions for a tertiary Hopf bifurcation. Applications to symmetrically coupled maps and to two coupled, vertically forced pendulums are described.  相似文献   

6.
This paper presents a contribution to bifurcation phenomena in scrape-off layer modelling. The bifurcations are caused by the non-monotonic temperature behaviour of the radiation characteristics of plasma impurities. Low-frequency relaxation oscillations observed in divertor plasmas of the ASDEX Upgrade tokamak are analyzed and computed using a simple model for the dynamics of the impurity density and the electron temperature. The corresponding model equations are a special case of a general system of transport equations whose stability is analyzed. Bifurcations are calculated by solving autonomous and parametrically driven model equations.  相似文献   

7.
In this article, we analyze the stability and the associated bifurcations of several types of pulse solutions in a singularly perturbed three-component reaction-diffusion equation that has its origin as a model for gas discharge dynamics. Due to the richness and complexity of the dynamics generated by this model, it has in recent years become a paradigm model for the study of pulse interactions. A mathematical analysis of pulse interactions is based on detailed information on the existence and stability of isolated pulse solutions. The existence of these isolated pulse solutions is established in previous work. Here, the pulse solutions are studied by an Evans function associated to the linearized stability problem. Evans functions for stability problems in singularly perturbed reaction-diffusion models can be decomposed into a fast and a slow component, and their zeroes can be determined explicitly by the NLEP method. In the context of the present model, we have extended the NLEP method so that it can be applied to multi-pulse and multi-front solutions of singularly perturbed reaction-diffusion equations with more than one slow component. The brunt of this article is devoted to the analysis of the stability characteristics and the bifurcations of the pulse solutions. Our methods enable us to obtain explicit, analytical information on the various types of bifurcations, such as saddle-node bifurcations, Hopf bifurcations in which breathing pulse solutions are created, and bifurcations into travelling pulse solutions, which can be both subcritical and supercritical.  相似文献   

8.
The response of two-degree-of-freedom systems with quadratic non-linearities to a principal parametric resonance in the presence of two-to-one internal resonances is investigated. The method of multiple scales is used to construct a first-order uniform expansion yielding four first-order non-linear ordinary differential (averaged) equations governing the modulation of the amplitudes and the phases of the two modes. These equations are used to determine steady state responses and their stability. When the higher mode is excited by a principal parametric resonance, the non-trivial steady state value of its amplitude is a constant that is independent of the excitation amplitude, whereas the amplitude of the lower mode, which is indirectly excited through the internal resonance, increases with the amplitude of the excitation. However, in addition to Poincaré-type bifurcations, this response exhibits a Hopf bifurcation leading to amplitude- and phase-modulated motions. When the lower mode is excited by a principal parametric resonance, the averaged equations exhibit both Poincaré and Hopf bifurcations. In some intervals of the parameters, the periodic solutions of the averaged equations, in the latter case, experience period-doubling bifurcations, leading to chaos.  相似文献   

9.
We consider diffusively coupled logistic maps in one- and two-dimensional lattices. We investigate periodic behaviors as the coupling parameter varies, i.e., existence and bifurcations of some periodic orbits with the largest domain of attraction. Similarity and differences between the two lattices are shown. For small coupling the periodic behavior appears to be characterized by a number of periodic orbits structured in such a way to give rise to distinct, reverse period-doubling sequences. For intermediate values of the coupling a prominent role in the dynamics is played by the presence of normally attracting manifolds that contain periodic orbits. The dynamics on these manifolds is very weakly hyperbolic, which implies long transients. A detailed investigation allows the understanding of the mechanism of their formation. A complex bifurcation is found which causes an attracting manifold to become unstable. (c) 1994 American Institute of Physics.  相似文献   

10.
Summary The possible bifurcations of a convective instability in viscoelastic fluid are studied. The viscoelastic behaviour is modelized by means of the Oldroyd type fluid whose parameters can be adjusted to suit a large class of polymeric fluids. We analyse in some detail bifurcations of codimension one (stationary or oscillatory convection) and codimension two for such kind of fluids. By a weak nonlinear analysis, the coefficients of the amplitude equations corresponding to the different bifurcations are also determined. It has been found that the nature of the convective solution depends crucially on both the viscoelastic parameters and the constitutive equation used to describe the fluid.  相似文献   

11.
We report on the experimental investigation of gluing bifurcations in the analog electronic circuit which models a dynamical system of the third order: Lorenz equations with an additional quadratic nonlinearity. Variation of one of the resistances in the circuit changes the coefficient at this nonlinearity and replaces the Lorenz route to chaos by a different scenario which leads, through the sequence of homoclinic bifurcations, from periodic oscillations of the voltage to the irregular ones. Every single bifurcation “glues” in the phase space two stable periodic orbits and creates a new one, with the doubled length: a sequence of such bifurcations results in the birth of the chaotic attractor.  相似文献   

12.
Non-linear oscillations of a beam subjected to a periodic force at a combination resonance are considered. Using the Galerkin method, a partial differential equation of oscillations is reduced to a system of ordinary differential equations with a small parameter. A system of three autonomous differential equations is derived, the multiple scales method being used. Qualitative properties of trajectories are analyzed. The Naimark-Sacker bifurcations at the combination resonance are analyzed by the center manifold method. Almost-periodic oscillations of a beam arise due to these bifurcations. These oscillations are investigated qualitatively and numerically.  相似文献   

13.
A tubular nonisothermal-nonadiabatic chemical reactor with a consecutive reactions described by a set of three nonlinear parabolic equations, shows a sequence of period-doubling bifurcations of a “limit cycle”. A numerical examination of the model reveals that complex periodic and irregular oscillations are possible. With increasing value of the Peclet number regular and irregular oscillations are suppressed and disappear. From the computed results may be informed that for reacting systems nonlinear parabolic equations may feature similar qualitative properties as the ordinary differential equations. The results of this numerical study may be used to explain turbulization of laminar flames.  相似文献   

14.
We present an analysis of the primary bifurcations that occur in a mathematical model that uses the (three-dimensional) Navier-Stokes equations in the Boussinesq approximation to describe the flows of a near unity Prandtl number fluid (i.e. air) in the differentially heated rotating annulus. In particular, we investigate the double Hopf (Hopf-Hopf) bifurcations that occur along the axisymmetric to non-axisymmetric flow transition. Parameter-dependent centre manifold reduction and normal forms are used to show that in certain regions in parameter space, stable quasiperiodic mixed-azimuthal mode solutions result as a nonlinear interaction of two bifurcating waves with different azimuthal wave numbers. These flows have been called wave dispersion and interference vacillation. The results differ from similar studies of the annulus with a higher Prandtl number fluid (i.e. water). In particular, we show that a decrease in Prandtl number can stabilize these mixed-mode solutions.  相似文献   

15.
The dynamics near a Hopf saddle-node bifurcation of fixed points of diffeomorphisms is analysed by means of a case study: a two-parameter model map G is constructed, such that at the central bifurcation the derivative has two complex conjugate eigenvalues of modulus one and one real eigenvalue equal to 1. To investigate the effect of resonances, the complex eigenvalues are selected to have a 1:5 resonance. It is shown that, near the origin of the parameter space, the family G has two secondary Hopf saddle-node bifurcations of period five points. A cone-like structure exists in the neighbourhood, formed by two surfaces of saddle-node and a surface of Hopf bifurcations. Quasi-periodic bifurcations of an invariant circle, forming a frayed boundary, are numerically shown to occur in model G. Along such Cantor-like boundary, an intricate bifurcation structure is detected near a 1:5 resonance gap. Subordinate quasi-periodic bifurcations are found nearby, suggesting the occurrence of a cascade of quasi-periodic bifurcations.  相似文献   

16.
Bambi Hu 《Physics Reports》1982,91(5):233-295
The methods of the real-space renormalization group, and their application to critical and chaotic phenomena are reviewed. The article consists of two parts: the first part deals with phase transitions and critical phenomena; the second part, bifurcations and transitions to chaos. We begin with an introduction to the phenomenology of phase transitions and critical phenomena. Seminal concepts such as scaling and universality, and their characterization by critical exponents are discussed. The basic ideas of the renormalization group are then explained. A survey of real-space renormalization-group methods: decimation, Migdal-Kadanoff approximation, cumulant and cluster expansions, is given. The Hamiltonian formulation of classical statistical systems into quantum mechanical systems by the method of the transfer matrix is introduced. Quantum renormalization-group methods of truncation and projection, and their application to the transcribed quantum mechanical Ising model in a transverse field are illustrated. Finally, the quantum cumulant-expansion method as applied to the one-dimensional quantum mechanical XY model is discussed. The second part of the article is devoted to the subject of bifurcations and transitions to chaos. The three most commonly discussed kinds of bifurcations: the pitchfork, tangent and Hopf bifurcations, and the associated routes to chaos: period doubling, intermittency and quasiperiodicity are discussed. Period doubling based on the logistic map is explained in detail. Universality and its expression in terms of functional renormalization-group equations is discussed. The Liapunov characteristic exponent and its analogy to the order parameter are introduced. The effect of external noise and its universal scaling feature are shown. The simplest characterizations of the Hénon strange attractor are intuitively illustrated. The purpose of this article is primarily pedagogical. The similarity between critical and chaotic phenomena is a recurrent theme that underlines the importance and usefulness of such concepts as scaling, renormalization and universality.  相似文献   

17.
胡文  赵广浩  张弓  张景乔  刘贤龙 《物理学报》2012,61(17):170505-170505
本文研究时标上正弦动力学方程的平衡点稳定性和分岔现象. 研究表明随时标参数的变化,正弦动力学方程展现出完全不同的解, 会产生n倍周期分岔和平衡点分裂等特有现象.同时,不增加系统参数, 仅改变时标的复杂性就能扩展动力学方程处于混沌状态的参数空间, 这为时标上动力学方程在混沌加密和雷达波形设计等领域的应用提供了潜在的优势.  相似文献   

18.
We present a qualitative analysis of a generic model structure that can simulate the bursting and spiking dynamics of many biological cells. Four different scenarios for the emergence of bursting are described. In this connection a number of theorems are stated concerning the relation between the phase portraits of the fast subsystem and the global behavior of the full model. It is emphasized that the onset of bursting involves the formation of a homoclinic orbit that travels along the route of the bursting oscillations and, hence, cannot be explained in terms of bifurcations in the fast subsystem. In one of the scenarios, the bursting oscillations arise in a homoclinic bifurcation in which the one-dimensional (1D) stable manifold of a saddle point becomes attracting to its whole 2D unstable manifold. This type of homoclinic bifurcation, and the complex behavior that it can produce, have not previously been examined in detail. We derive a 2D flow-defined map for this situation and show how the map transforms a disk-shaped cross-section of the flow into an annulus. Preliminary investigations of the stable dynamics of this map show that it produces an interesting cascade of alternating pitchfork and boundary collision bifurcations. Received 24 June 1999 and Received in final form 17 February 2000  相似文献   

19.
Mean field approximation of a large collection of FitzHugh-Nagumo excitable neurons with noise and all-to-all coupling with explicit time-delays, modelled by N?1 stochastic delay-differential equations is derived. The resulting approximation contains only two deterministic delay-differential equations but provides excellent predictions concerning the stability and bifurcations of the averaged global variables of the exact large system.  相似文献   

20.
This note studies the mechanism of turbulent energy cascade through an opportune bifurcations analysis of the Navier–Stokes equations, and furnishes explanations on the more significant characteristics of the turbulence. A statistical bifurcations property of the Navier–Stokes equations in fully developed turbulence is proposed, and a spatial representation of the bifurcations is presented, which is based on a proper definition of the fixed points of the velocity field. The analysis first shows that the local deformation can be much more rapid than the fluid state variables, then explains the mechanism of energy cascade through the aforementioned property of the bifurcations, and gives reasonable argumentation of the fact that the bifurcations cascade can be expressed in terms of length scales. Furthermore, the study analyzes the characteristic length scales at the transition through global properties of the bifurcations, and estimates the order of magnitude of the critical Taylor-scale Reynolds number and the number of bifurcations at the onset of turbulence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号