首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
杨哲  赵连洁  赵学亮  秦伟  李俊林 《中国物理 B》2016,25(2):24202-024202
Lensless ghost imaging has attracted much interest in recent years due to its profound physics and potential applications. In this paper we report studies of the robust properties of the lensless ghost imaging system with a pseudo-thermal light source in a strongly scattering medium. The effects of the positions of the strong medium on the ghost imaging are investigated. In the lensless ghost imaging system, a pseudo-thermal light is split into two correlated beams by a beam splitter. One beam goes to a charge-coupled detector camera, labeled as CCD2. The other beam goes to an object and then is collected in another charge-coupled detector camera, labeled as CCD1, which serves as a bucket detector. When the strong medium, a pane of ground glass disk, is placed between the object and CCD1, the bucket detector, the quality of ghost imaging is barely affected and a good image could still be obtained. The quality of the ghost imaging can also be maintained, even when the ground glass is rotating, which is the strongest scattering medium so far. However, when the strongly scattering medium is present in the optical path from the light source to CCD2 or the object, the lensless ghost imaging system hardly retrieves the image of the object. A theoretical analysis in terms of the second-order correlation function is also provided.  相似文献   

2.
基于统计光学的无透镜鬼成像数值模拟与实验验证   总被引:1,自引:3,他引:1  
张明辉  魏青  沈夏  刘永峰  刘红林  韩申生 《光学学报》2007,27(10):1858-1866
作为量子信息领域分支的鬼成像,由于物体的像将出现在不包含物体的光路上的特点,使得这一领域的研究引人入胜。一度认为,只有基于纠缠态双光子的纠缠光源,才能实现鬼成像;但近年来的研究表明,经典热光场也能实现这一过程。从经典统计光学入手,建立了热光场的数值模型,模拟符合热光特性的光场变化、光场传播、以及物体透射函数对热光场的调制,进而从光强度起伏的关联函数中,分别重现振幅型物体和纯相位型物体的傅里叶变换图像;通过与真实实验结果的对比,表明基于统计光学原理的该数值模型所预测的实验结果,与真实的实验结果完全一致。  相似文献   

3.
In this letter, we analyze the effects of light intensity find that the brightness of reflective ghost image can on reflective ghost imaging with thermal source. We be changed by modulating the light intensity of the source and the splitting ratio of the beam splitter. The signal-to-noise ratio will be improved by increa.sing the light intensity of the source. More important, we can obtain the reflective ghost image with high image quality by adopting a low light intensity signal beam and a high light intensity reference beam, which is better than the classical optical imaging, because it can reduce the effects of light on the object.  相似文献   

4.
In this Letter, we propose an advanced framework of ghost edge imaging, named compressed ghost edge imaging(CGEI). In the scheme, a set of structured speckle patterns with pixel shifting illuminate on an unknown object.The output is collected by a bucket detector without any spatial resolution. By using a compressed sensing algorithm, we obtain horizontal and vertical edge information of the unknown object with the bucket detector detection results and the known structured speckle patterns. The edge is finally constructed via twodimensional edge information. The experimental and numerical simulations results show that the proposed scheme has a higher quality and reduces the number of measurements, in comparison with the existing edge detection schemes based on ghost imaging.  相似文献   

5.
The fourier-transform patterns of an object are usually observed in the far-field region or obtained in the near-field region with the help of lenses. Here we propose and experimentally demonstrate a scheme of Fourier-transform patterns in the Fresnel diffraction region with thermal light. In this scheme, neither a lens nor a beamsplitter is used, and only one single charge coupled device(CCD) is employed. It means that dividing one beam out of a light source into signal and reference beams is not as necessary as the one done by the use of a beamsplitter in usual ghost interference experiments.Moreover, the coincidence measurement of two point detectors is not necessary and data recorded on a single CCD are sufficient for reconstructing the ghost diffraction patterns. The feature of the scheme promises a great potential application in the fields of X-ray and neutron diffraction imaging processes.  相似文献   

6.
In traditional ghost imaging, the entangled photon pairs produced from the spontaneous parametric down conversion(SPDC) process are used. There is an intrinsic disadvantage that the utilization efficiency of the photon pairs is very low. Inasmuch as all the correlated photon pairs produced by the degenerate SPDC process can be used to record the image of an object, the ghost imaging scheme we present here has a higher utilization efficiency of the photon pairs. We also investigate the robustness of our experimental scheme. The experimental results show that, no matter whether the photon-pair source is two light cones or two beam-like spots, the clear image of the object can be obtained. The slight rotation of the nonlinear crystal has no influence on the imaging quality.Our experimental results also demonstrate that when the part of the photon-pair source in the signal path or the idler path is blocked by unwanted things, the clear ghost image of the object can still be recorded.  相似文献   

7.
A two-step phase-retrieval method, based on Fourier-transform ghost imaging, was demonstrated. For the complex objects, the phase-retrieval process was divided into two steps: first got the complex object’s amplitude from the Fourier-transform patterns of the squared object function, then combining with the Fourier-transform patterns of the object function to get the phase. The theoretical basis of this technique is outlined, and the experimental results are presented.  相似文献   

8.
We experimentally demonstrate a three-dimensional (3D) ghost imaging method based on period diffraction correlation imaging. Compared with conventional ghost imaging, our method can easily retrieve the images of different focal planes. Due to the correlation between the disturbed object beam and the reference beams which do not pass through any scattering, the clear images can be periodically obtained in the uncovered zones even through a scattering medium. The analysis of the 3D imaging resolution reveals that the proper resolution for actual demand can be achieved by designing our devices. The implementation of this experiment is quite simple and low-cost. It facilitates the practical applications of ghost imaging.  相似文献   

9.
Hui Guo 《中国物理 B》2022,31(8):84201-084201
We propose a method for imaging a periodic moving/state-changed object based on computational ghost imaging with Hadamard speckle patterns and a slow bucket detector, named as PO-HCGI. In the scheme, speckle patterns are produced from a part of each row of a Hadamard matrix. Then, in each cycle, multiple speckle patterns are projected onto the periodic moving/state-changed object, and a bucket detector with a slow sampling rate records the total intensities reflected from the object as one measurement. With a series of measurements, the frames of the moving/state-changed object can be obtained directly by the second-order correlation function based on the Hadamard matrix and the corresponding bucket detector measurement results. The experimental and simulation results demonstrate the validity of the PO-HCGI. To the best of our knowledge, PO-HCGI is the first scheme that can image a fast periodic moving/state-changed object by computational ghost imaging with a slow bucket detector.  相似文献   

10.
We report on a new experiment in which ghost imaging and ghost interference with quasi-thermal light are simultaneously obtained from the same set of experimental reference patterns. By sliding the mask along the object arm in a continuous way, one can see imaging and diffraction patterns to come to light and fade out in opposite directions.  相似文献   

11.
In this paper, we investigated phase modulation-based computational ghost imaging. According to the results of numerical simulations, we found that the range of the random phase affects the quality of the reconstructed image. Besides,compared with those amplitude modulation-based computational ghost imaging schemes, introducing random phase modulation into the computational ghost imaging scheme could significantly improve the spatial resolution of the reconstructed image, and also extend the field of view.  相似文献   

12.
We propose a compressed ghost imaging scheme based on differential speckle patterns,named CGI-DSP.In the scheme,a series of bucket detector signals are acquired when a series of random speckle patterns are employed to illuminate an unknown object.Then the differential speckle patterns(differential bucket detector signals) are obtained by taking the difference between present random speckle patterns(present bucket detector signals) and previous random speckle patterns(previous bucket detector signals).Finally,the image of object can be obtained directly by performing the compressed sensing algorithm on the differential speckle patterns and differential bucket detector signals.The experimental and simulated results reveal that CGI-DSP can improve the imaging quality and reduce the number of measurements comparing with the traditional compressed ghost imaging schemes because our scheme can remove the environmental illuminations efficiently.  相似文献   

13.
We present a ghost imaging scheme that can obtain a good pseudocolor image of black-and-white objects.The essential idea is to use a multi-wavelength thermal light source and the phase modulation pseudocolor encoding technique,which overcomes the disadvantages of other methods involved spatial filtering.Therefore,the pseudocolor ghost image achieved by this imaging scheme is better than that obtained by other methods in terms of brightness,color,and signal-tonoise ratio.  相似文献   

14.
We present a method for optical authentication via photon-synthesized ghost imaging using optical nonlinear correlation. In ghost imaging, multiple series of photons recorded at the object beam arm can be arbitrarily controlled for the generation of synthesized objects. Ghost imaging with sparse reference intensity patterns provides a channel to effectively modulate the noise-like synthesized objects during the recovery, and the reconstructed (noise-like) objects, i.e., added or subtracted information, can be further authenticated by optical nonlinear correlation algorithm. It is expected that the proposed method can provide an effective and promising alternative for ghost-imaging-based optical processing.  相似文献   

15.
Based on the optical coherent theory and the extended Huygens–Fresnel integral, lensless ghost imaging of Multi-Gaussian Schell-model beams through the slant non-Kolmogorov turbulence channels with Z-tilt aberration correction has been studied and the theoretical models have been derived. Our results indicate that the nearer of object to illuminant plane, the larger beam width and the more beamlet number are, the more fine of image quality is. The undersize of illumination light source will cause the quality decline of ghost imaging and the image quality of the object illuminated by the incoherent light are worse than that of illuminated by partially coherent light.  相似文献   

16.
张玉东  赵生妹 《中国物理 B》2017,26(5):54205-054205
An optical encryption scheme based on a ghost imaging system with disordered speckles is proposed to obtain a higher security with a small key. In the scheme, Alice produces the random speckle patterns and obtains the detection results with the help of a computational ghost imaging(CGI) system. Then Alice permutes the order of the random speckle patterns and shares the permutation sequence as a secure key to the authorized users. With the secure key, Bob could recover the object with the principle of the CGI system, whereas, the unauthorized users could not obtain any information of the object. The numerical simulations and experimental results show that the proposed scheme is feasible with a small key, simultaneously,it has a higher security. When the eavesdropping ratio(ER) is less than 40%, the eavesdropper cannot acquire any useful information. Meanwhile, the authorized users could recover completely with the secure key.  相似文献   

17.
We experimentally demonstrate a novel ghost imaging experiment utilizing a classical light source,capable of resolving objects with a high visibility.The experimental results show that our scheme can indeed realize ghost imaging with high visibility for a relatively complicated object composed of three near-ellipse-shaped holes with different dimensions.In our experiment,the largest hole is ~36 times of the smallest one in area.Each of the three holes exhibits high-visibility in excess of 80%.The high visibility and high spatial-resolution advantages of this technique could have applications in remote sensing.  相似文献   

18.
The coherent-mode representation theory is firstly used to analyze lensless two-color ghost imaging. A quite complicated expression about the point-spread function(PSF) needs to be given to analyze which wavelength has a stronger affect on imaging quality when the usual integral representation theory is used to ghost imaging. Unlike this theory, the coherent-mode representation theory shows that imaging quality depends crucially on the distribution of the decomposition coefficients of the object imaged in a two-color ghost imaging. The analytical expression of the decomposition coefficients of the object is unconcerned with the wavelength of the light used in the reference arm, but has relevance with the wavelength in the object arm. In other words, imaging quality of two-color ghost imaging depends primarily on the wavelength of the light illuminating the object. Our simulation results also demonstrate this conclusion.  相似文献   

19.
We present a scheme that is able to achieve the ghost imaging with broad distance. The physical nature of our scheme is that the different wavelength beams are separated in free space by an optical media according to the slow light or dispersion principle. Meanwhile, the equality of the optical distance of the two light arms is not violated. The photon correlation is achieved by the rotating ground glass plate(RGGP) and spatial light modulator(SLM), respectively. Our work shows that a monochromic ghost image can be obtained in the case of RGGP. More importantly, the position(or distance) of the object can be ascertained by the color of the image. Thus, the imaging and ranging processes are combined as one process for the first time to the best of our knowledge. In the case of SLM, we can obtain a colored image regardless of where the object is.  相似文献   

20.
We report the first (to our knowledge) far-field ghost images formed with phase-sensitive classical-state light and compare them with ghost images of the same object formed with conventional phase-insensitive classical-state light. To generate signal and reference beams with phase-sensitive cross correlation, we used a pair of synchronized spatial light modulators that imposed random, spatially varying, anticorrelated phase modulation on the outputs from 50-50 beam splitting of a laser beam. In agreement with theory, we found the phase-sensitive image to be inverted, whereas the phase-insensitive image is erect, with both having comparable spatial resolutions and signal-to-noise ratios.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号