首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 132 毫秒
1.
In this paper, the effects of amplification of diffraction-limited pulsed CO2 laser radiation over several meters of amplification length on beam quality and pointing stability are documented. Millijoule pulses are amplified up to 3 J. Generation and amplification of the 10 μm wavelength pulses were performed in the discharge volume of an e-beam sustained CO2 laser. Beam quality is measured according to the ISO/DIS 11146 standard in terms of the beam quality factor M2. Fluence distributions were recorded with a beam analysing system of 100 μm spatial resolution. M2 parameter values ranged up to 1.55 for amplified pulse energies of 3 J. The necessity of beam-quality restoring techniques is inferred for the multijoule pulse energy regime.  相似文献   

2.
We report on a Yb:YAG Innoslab laser amplifier system for generation of subpicsecond high energy pump pulses for optical parametric chirped pulse amplification (OPCPA) at high repetition rates. Pulse energies of up to 20 mJ (at 12.5 kHz) and repetition rates of up to 100 kHz were attained with pulse durations of 830 fs and average power in excess of 200 W. We further investigate the possibility to use subpicosecond pulses to derive a stable continuum in a YAG crystal for OPCPA seeding.  相似文献   

3.
We report a compact thin-disk Yb:KYW regenerative amplifier system. Two different concepts are investigated to obtain either subpicosecond pulses with up to 160 μJ or a pulse energy of 20 μJ with a pulse width of about 300 fs. The first concept uses intra-cavity group-velocity dispersion compensation with Gires–Tournois interferometer mirrors to avoid pulse stretching during amplification. The onset of nonlinear effects in this concept inhibits the generation of shorter pulse durations at this energy level. Shorter pulses can be achieved with the second concept, which is based on dispersive pulse stretching during amplification and uses pulse compression after amplification with a grating compressor. Repetition rates up to 45 kHz are demonstrated.This revised version was published online in May 2005. The Article Category was removed.This revised version was published online in August 2005 with a corrected cover date.  相似文献   

4.
High average power ultra-fast fiber chirped pulse amplification system   总被引:2,自引:0,他引:2  
We report on a high-gain diode-pumped ytterbium-doped fiber-amplifier system delivering pulse energies in the 100-μJ range at high repetition rates (32 kHz) with nearly-diffraction-limited beam quality (M2∼1.7) at a 1060-nm center wavelength. Femtosecond seed-laser pulses are stretched in a commercially available single-mode fiber and compressed after amplification to subpicosecond pulse duration. In a multimode Yb-doped fiber amplifier we have demonstrated average powers of up to 22 W and single-pulse energies of up to 130 μJ. Received: 16 August 2000 / Revised version: 4 September 2000 / Published online: 8 November 2000  相似文献   

5.
We report on efficient THz pulse generation via optical rectification with femtosecond laser pulses focused to a line by a cylindrical lens. This configuration provides phase-matched conditions in the superluminal regime. 35 pJ THz pulses have been generated with this technique in a stoichiometric LiNbO3 crystal pumped by 2 μJ femtosecond laser pulses at room temperature. An unusual superquadratic rise of the THz pulse energy with the laser pulse energy has been observed at high laser energies. This extraordinary energy dependence of the THz generation efficiency is explained by self-focusing of the laser beam in the crystal. Z-scan measurements and comparison of the THz pulse spectra created with laser pulses having different energies confirm this interpretation.  相似文献   

6.
In this paper, we present a frequency-doubled pulsed Yb-doped fiber amplifier exhibiting Fourier-transform limited 10-ns pulses at a repetition rate of up to 5 kHz. The amplifier is seeded by an external cavity diode laser whose output is chopped into light pulses of 10- to 1200-ns duration. The first stage is operated with a single-mode fiber, while the other two stages employ multi-mode double clad fibers. Output energies of up to 516 μJ per pulse have been recorded. The output power is limited by the onset of stimulated Brillouin scattering. As an example of the possible applications, we demonstrate the temperature measurement of water by Brillouin scattering employing the frequency-doubled radiation from the amplifier.  相似文献   

7.
章若冰  张伟力 《光学学报》1993,13(3):99-203
利用铜蒸气激光器泵浦碰撞锁模染料激光放大器,获得2.4μJ,70 fs低色散光脉冲,脉冲重复率为5kHz.  相似文献   

8.
A new type of solid-state femtosecond amplifier is demonstrated that is based on quasi-phase-matched parametric amplification. Such gain media are different from conventional solid-state amplifiers in that their amplification bandwidths and pump and signal wavelengths can be engineered. Furthermore, high gain is characteristic of parametric amplification, permitting extraction of high energies without the need to resort to multiple-pass configurations. We report a parametric chirped pulse amplification system in which femtosecond pulses from a mode-locked Er-doped fiber laser system are amplified to 1-mJ energies in a single pass by use of a 5-mm-long periodically poled LiNbO(3) (PPLN) crystal. This amplifier is pumped by 5-mJ and 0.5-ns pulses at 786 nm, demonstrating that limitations associated with a low optical-damage threshold for long pump pulses can be overcome because of the high nonlinearity of PPLN and that relatively simple Q -switched lasers can be used with such parametric amplifiers.  相似文献   

9.
10.
The results from the generation and amplification of positively chirped pulses of 0.05 ns duration at a central wavelength of 475 nm in a THL-100 laser system are presented. It is found that the initial complex allows the generation of such radiation pulses with Gaussian intensity profiles and energies of up to 7 mJ. When such pulses with energies of 2–4 mJ are amplified in an XeF(C-A) amplifier, it is possible to achieve a saturation mode and obtain at the output laser beams with energies of up to 3.2 J. The possibility of compressing subnanosecond pulses at a wavelength of 475 nm in a compressor based on diffraction gratings is demonstrated.  相似文献   

11.
A high efficiency and high peak power laser system with short-pulse and good beam quality has been demonstrated by using a master oscillator power amplifier with two-pass amplification configuration. The master oscillator, end-pumped with a fiber-coupled laser diode array, provides low power but excellent beam quality pulses, and the amplifier boosts the pulse energy by orders without significant beam quality degradation. Short pulses of 8.5 ns with energy up to 130 mJ and approximately diffraction limited beam quality have been demonstrated.  相似文献   

12.
We present a novel high power femtosecond infrared laser source, based on a three-stage chirped-pulse amplification scheme. Owing to the high power output of the Ti:sapphire amplifiers, it becomes routinely possible to produce femtosecond infrared laser pulses in the wavelength region of 2.6–20 μm with minimum pulse energies of 15 μJ, to our knowledge roughly an improvement of an order of magnitude. With such pulses we have performed femtosecond second-order nonlinear optical surface spectroscopy in the fingerprint region. We have probed the skeletal modes of the first few monolayers of a polymer/air interface in a femtosecond vibrational sum frequency generation experiment. This development opens up new possibilities to investigate surface structures and dynamics of, e.g., organo-metallic compounds, proteins, and peptides. PACS 42.65.-k; 68.35.-Ja; 82.35.Ps  相似文献   

13.
Plasma-mediated ablations of brain tissue have been performed using picosecond laser pulses obtained from a Nd:YLF oscillator/regenerative amplifier system. The laser pulses had a pulse duration of 35 ps at a wavelength of 1.053 µm. The pulse energy varied from 90 µJ to 550 µJ at a repetition rate of 400 Hz. The energy density at the ablation threshold was measured to be 20 J/cm2. Comparisons have been made to 19 ps laser pulses at 1.68 µm and 2.92 µm from an OPG/OPA system and to microsecond pulse trains at 2.94 µm from a free running Er:YAG laser. Light microscopy and scanning electron microscopy were performed to judge the depth and the quality of the ablated cavities. No thermal damage was induced by either of the picosecond laser systems. The Er:YAG laser, on the other hand, showed 20 µm wide lateral damage zones due to the longer pulse durations and the higher pulse energies.  相似文献   

14.
Theoretical studies are presented for the amplification and compression of multiline short pulses of CO2 laser radiation at 10.6 μ in a high gain, CO2 laser amplifier. A method of efficiently generating high energy, subnanosecond pulses of CO2 laser radiation is proposed utilizing a pulse tailoring technique recently disclosed by Figueira and Sutphin.  相似文献   

15.
In ultrashort pulse amplification a narrowband gas pump pulse laser has been used for the first time. An all-stage optical parametric chirped pulse amplifier (OPCPA) was driven by a single-shot iodine photodissociation laser. For the first time a broadband amplification was achieved in potassium dihydrogen phosphate crystal at 800 nm seeding. Ti:sapphire laser pulses stretched from 12.5 fs to 250 ps were amplified and compressed to 27 fs at a 0.5 TW output power. The results suggest using narrowband high power gas lasers as OPCPA drivers to generate petawatt beams.  相似文献   

16.
以钕玻璃为增益介质研制了高能啁啾脉冲激光放大器系统,实验演示输出啁啾脉冲能量在百焦耳量级时,光谱宽度保持在4—6 nm.最大能量168 J,相应谱宽5.5 nm,中心波长1054 nm.压缩脉冲宽度最短710 fs. 关键词: 啁啾脉冲放大 钕玻璃 高能拍瓦  相似文献   

17.
We report on an ytterbium-doped fiber chirped-pulse amplification (CPA) system delivering millijoule level pulse energy at repetition rates above 100 kHz corresponding to an average power of more than 100 W. The compressed pulses are as short as 800 fs. As the main amplifier, an 80 microm core diameter short length photonic crystal fiber is employed, which allows the generation of pulse energies up to 1.45 mJ with a B-integral as low as 7 at a stretched pulse duration of 2 ns. A stretcher-compressor unit consisting of dielectric diffraction gratings is capable of handling the average power without beam and pulse quality distortions. To our knowledge, we present the highest pulse energy ever extracted from fiber based femtosecond laser systems, and a nearly 2 orders of magnitude higher repetition rate than in previously published millijoule-level fiber CPA systems.  相似文献   

18.
针对啁啾脉冲放大技术建成的钛宝石激光装置,提出一种获得高重复率激光脉冲列的方法.通过改变钛宝石再生放大器中泡克耳斯盒电光开关的传统工作模式,使得腔内放大的脉冲从某特定时刻起,每当在腔内往返一次就以一定的倒出比例(倒出率)倒出腔内脉冲能量的一部分,从而可以在有限的时间段内产生高重复率的啁啾激光脉冲列.基于Franz-Nodvik放大理论,建立了该高重复率再生放大器的理论模型,通过数值计算,系统地分析了初始增益、倒出时刻、倒出率对输出的脉冲序列的影响.在抽运功率为35mJ、倒出率为1/2的实验条件下,通过腔外的脉冲数量选择器,在一个抽运周期内的有限时间段内已获得了14个幅度相近、单脉冲能量约为0.02mJ、重复率为100MHz的啁啾脉冲序列.从此啁啾脉冲列中选取数个脉冲,通过10TW级的激光系统放大和压缩,已获得100MHz重复率的飞秒太瓦级脉冲列. 关键词: 高重复率 多通放大 啁啾脉冲放大 钛宝石激光器  相似文献   

19.
Eichhorn M 《Optics letters》2005,30(5):456-458
A diode-pumped Tm-doped fiber-optic amplifier that has a small-signal gain of >30 dB at 1870 nm is reported. Output pulses of up to 3-W peak power at a 1-60-kHz repetition rate can be generated by amplification of 20-40-ns laser diode pulses of up to 2-mW launched peak power. The output signal quality, i.e., the ratio of the output pulse energy and the total amplified spontaneous emission (ASE) output energy between two pulses, depends on the relative propagation direction of pump and signal and can be dramatically increased by choice of the correct propagation scheme. In the optimum pump geometry the pulse energy can be raised to as much as 20 times the ASE energy. This is the first report to the author's knowledge of fiber-optic amplification of short diode laser pulses near 1.9 microm with high repetition rates in Tm-doped fibers.  相似文献   

20.
Fu Q  Seier F  Gayen SK  Alfano RR 《Optics letters》1997,22(10):712-714
We report on a femtosecond Ti:sapphire laser amplifier system that generates pulse energies >5 mJ at a 1-kHz repetition rate. The system consists of regenerative and multipass amplifiers and uses the technique of chirped-pulse amplification. When the system was seeded with 70-fs pulses at 800 nm from a self-mode-locked Ti:sapphire oscillator, amplified pulses of 94-fs duration at a repetition rate of 1 kHz and an average output power of 5.4 W were produced. The amplified pulse-repetition rate is variable from 250 Hz to 3 kHz. Pulse energies of >7.5 mJ were obtained at 500 and 250 Hz.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号