首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 52 毫秒
1.
激光产生X光的数值模拟研究   总被引:2,自引:0,他引:2  
本文对激光X光转换的主要物理过程和数值模拟程序概况作了概括性的介绍,给出了典型的物理图像和数值计算结果。在分析数值结果的基础上,对某些重要物理量作了规律性的研究,预估结果与实验测量值作了比较,它们在定性趋势和定量结果方面都符合得较为满意。  相似文献   

2.
超强激光加速产生的高能质子束源在基础物理研究、材料科学、生物医疗等领域具有广泛应用前景。基于激光聚变研究中心的SILEX-II装置,开展了高对比度飞秒激光驱动纳米刷靶质子加速实验研究。采用等离子体镜技术进一步提升激光对比度,有效降低了预脉冲对纳米刷靶结构的影响。相比于平面靶,采用纳米刷靶质子截止能量提高到1.5倍,质子束产额增加近一个量级,成功验证了超高功率密度下纳米刷靶对激光离子加速的增强效果,并且有效提升了质子束空间分布的均匀性。研究结果为高品质质子束源的产生和应用提供了技术途径。  相似文献   

3.
真空激光加速机制具有加速场梯度大、加速电子电量高的优点,目前制约真空加速机制研究发展的主要问题是如何产生具有一定初速度的电子并将其注入加速场。提出了一种利用强激光与锥型靶相互作用产生高能电子并实现真空加速的新方法,利用二维PIC(Particle-in-cell)粒子模拟程序对这一方法进行了研究。模拟结果显示,对于光强为1021 W/cm2量级的高斯激光脉冲,产生了能量为GeV量级、发散角约为1°的强流快电子束。此外还通过理论解析和参数模拟研究了靶半径对这种超热电子加速机制的影响。  相似文献   

4.
超短脉冲强激光与固体靶作用产生的高次谐波红移   总被引:1,自引:0,他引:1       下载免费PDF全文
张秋菊  盛政明  张杰 《物理学报》2004,53(7):2180-2183
用一维粒子模拟程序研究了超短脉冲强激光与超临界密度等离子体平板作用产生的高次谐波。分析了振荡镜面模型所不能解释的伴随高次谐波出现的频率红移现象。通常激光与固体靶作用中的高次谐波是由于激光从振荡靶面的反射产生的.除此之外,相对论光强的激光与固体靶作用还应考虑光压对靶的烧蚀推进作用,这时激光相当于从一个移动的振荡靶面反射,所以产生了带有红移的高次谐波. 关键词: 红移 超短脉冲强激光 高次谐波 粒子模拟  相似文献   

5.
超短超强激光与稀薄等离子体相互作用的数值研究   总被引:2,自引:0,他引:2  
陆全明  王水 《光学学报》1998,18(5):37-540
用一维粒子模拟方法(Particle-in-Cell)数值研究了超短超强激光(Iλ^2〉10^18W.μm^2/cm^2)与稀薄等离子体的相互作用过程,结果表明,超短超强激光与稀薄等相互作用后,在等离子体中激发起尾波和拉曼(Raman)波,它们的波长和频率的值与解析解符合得很好;同时在尾波的作用下,等离子体的部分电子被加速的很高的速度,甚至接近光速。  相似文献   

6.
7.
超短超强激光打靶产生的超热电子,与固体靶相互作用时会产生Kα线辐射.由经典定标律给出了法线方向超热电子的温度.利用蒙特卡罗方法,对超热电子在固体靶中的传输进行了研究,模拟了不同靶厚度情况下Kα产额和角分布及不同电子温度下Kα光子的转化效率.计算结果与实验符合较好.结果表明:在一定电子温度下,随着靶厚度的增加Kα光子产额会达到饱和,并会使Kα光子发射的各向异性变得更加严重;存在最佳的电子温度,使Kα线转化效率最高.  相似文献   

8.
激光产生等离子体的研究   总被引:5,自引:0,他引:5  
强激光(≈10^8-10^9W.cm^-^2)轰击固体靶产生等离子体,用4kV电势引出,得到最高总束流峰值为4.5mA,观察到离子最高电荷态为C^3^+,Al^3^+,Cu^4^+,Ta^5^+,Pb^4^+。另外,还详细研究了激光能数对等离子体的影响及激光等离子体的损失。  相似文献   

9.
超短光脉冲的概念、产生和应用   总被引:1,自引:0,他引:1  
激光的重要特征之一是可以产生纯电子学所不能产生的超短脉冲.自从激光诞生以来,超短光脉冲的产生、控制及其应用获得了飞速的发展.本文就超短光脉冲的概念、产生方法及其多领域的应用作一介绍.  相似文献   

10.
超短超强激光打靶产生的超热电子,与固体靶相互作用时会产生Kα线辐射.由经典定标律给出了法线方向超热电子的温度.利用蒙特卡罗方法,对超热电子在固体靶中的传输进行了研究,模拟了不同靶厚度情况下Kα产额和角分布及不同电子温度下Kα光子的转化效率.计算结果与实验符合较好.结果表明:在一定电子温度下,随着靶厚度的增加Kα光子产额会达到饱和,并会使Kα光子发射的各向异性变得更加严重;存在最佳的电子温度,使Kα线转化效率最高. 关键词: 超短超强激光 超热电子 蒙特卡罗方法 Kα线')" href="#">Kα线  相似文献   

11.
A laptop neutron source suited for the most demanding field or laboratory applications is presented. It is based on laser ablation of CD2 primary targets, plasma acceleration of the D+ ions, and their irradiation of secondary CD2 targets. The deuterium–deuterium (D-D) fusion reaction is induced in the secondary target, according to the values of fusion cross-section versus deuteron energy, which show a significant probability also at relatively low ion energies. The experiments were completed in the PALS laboratory, Prague, detecting monoenergetic neutrons at 2.45 MeV with an emission flux of about 109 neutrons per laser shot. Other experiments demonstrating the possibility to induce D-D events were performed at IPPLM, Warsaw, and at INFN-LNS, Catania, where the deuterons were accelerated at about 4 MeV and 50 keV, respectively. In the last case, a low laser intensity and a post-ion acceleration system were employed. A special interaction chamber, under vacuum, is proposed to develop a new source of monochromatic neutrons or thermalized distribution of neutrons  相似文献   

12.
基于超短超强激光的短脉冲中子源是实现超快中子探测的理想中子源。如何提升中子产额是目前短脉冲激光中子源实现应用需求亟需解决的关键问题。提出基于靶背鞘场加速机制和束靶反应方案,采用LiD复合组分靶作为中子转换体,可以有效提升激光中子产额。与常规的LiF转换体相比,除了p-Li和d-Li两个反应道之外,LiD转换体可以多出p-D和d-D两个反应道,因此可充分利用激光加速的质子和氘离子的多反应通道优势来提升中子产生概率。实验结果表明,相比于LiF转换体,LiD转换体可带来中子产额2~3倍的提升,达到5.2×108 n/sr的最高中子产额,并具备更好的前冲性。实验还区分了多反应通道的贡献,证明中子产额提升主要来自于p-D反应。  相似文献   

13.
针对激光烧蚀半导体材料Ge初期的特点,建立了1维的热传导和流体动力学模型。对波长为248 nm、脉宽为17 ns、峰值功率密度为4×108 W/cm2的KrF脉冲激光在133.32 Pa氦气环境下烧蚀Ge产生等离子体的特性进行了数值模拟。结果表明:单个激光脉冲对靶的烧蚀深度达到55 nm,蒸气膨胀前端由于压缩背景气体产生压缩冲击波, 波前的速度最大,温度很高。从不同时刻的电离率分布图中得出,在靶面附近区域,Ge的1阶电离始终占优势;在中心区域,脉冲作用时间内,Ge的2阶电离率比1阶电离率大,脉冲结束后,Ge的2阶电离率下降,1阶电离率逐渐变大。  相似文献   

14.
纳秒激光烧蚀冲量耦合数值模拟   总被引:1,自引:0,他引:1       下载免费PDF全文
常浩  金星  陈朝阳 《物理学报》2013,62(19):195203-195203
为研究激光烧蚀靶产生冲量过程和机理, 建立了一个复杂的一维热传导和流体动力学模型. 以空间碎片常见材料Al为例, 用建立的模型数值计算了纳秒脉宽激光烧蚀靶产生的冲量及冲量耦合系数随时间变化情况. 数值结果和已有的实验数据符合的较好. 数值计算表明: 激光脉冲时间内, 靶获得的冲量随时间迅速增加, 在脉冲时间结束后, 冲量变化随时间趋于稳定; 在冲量耦合过程中, 烧蚀等离子体向真空膨胀, 羽流尺度逐渐增大, 同时吸收入射激光能量, 导致激光与靶耦合的能量降低. 关键词: 激光烧蚀 冲量耦合 等离子体  相似文献   

15.
模拟了14 MeV中子在穿透样品后与闪烁体光纤的作用。对每根光纤中的能量沉积进行了计算,并转换成可见光(496 nm)光子数。在模拟实验中,分析了影响图像质量的因素。计算了散射中子本底与闪烁体和样品(聚乙烯)间距的关系。当间距为cm量级时,散射中子本底对图像的影响很小。计算表明系统对样品的甄别厚度与入射中子总数有关,在一定范围内近似与中子总数的对数成线性关系。通过模拟结果给出了理想平行中子束入射情况下系统的平面分辨率。  相似文献   

16.
 利用低温脉冲气阀获得了平均含有3×103氘原子的氘团簇。在飞秒激光装置上实现了氘团簇聚变,每发中子产额为1×103。中子产额对激光功率密度敏感,保持激光能量不变,随着激光焦斑的变大,DD聚变中子产额逐渐增加,最大值出现在激光焦斑为470 mm时;继续增大激光焦斑,没有观察到中子信号。实验结果还表明激光氘团簇聚变发生的区域主要是激光辐照的等离子体热区,此区域内邻近氘团簇库仑爆炸发射的高能氘离子碰撞引发聚变反应。  相似文献   

17.
半影成像具有灵敏度高的特点,该技术是未来惯性约束聚变(ICF)中子成像的主要技术路线。基于中子半影成像的基本要求,利用蒙特卡罗方法,采用偏移抽样法和面通量的体通量替代技巧,模拟中子在半影成像系统中的输运,得到2维图像,并通过图像重建程序得到重建的源区图像。利用模拟结果,对编码孔屏蔽材料的选择和外径设计进行了初步优化,最终选择5 cm厚的钨屏蔽材料,其编码孔外径为1 cm。  相似文献   

18.
在星光Ⅲ实验装置上开展皮秒激光脉冲中子源实验,使用液体闪烁体探测器测得较好的中子信号,利用飞行时间法获得中子的能量/时间分布,通过示波器电压时间积分与阻抗之比得到不同能量段的电荷值。建立液体闪烁体探测器Geant4计算模型,通过实际打靶情况与标定情况下液体闪烁体探测器出光口收集到的可见光光子数之比,结合标定的灵敏度数据,获得液体闪烁体探测器对不同能量中子的灵敏度。计算得到源发射的中子能谱,能量在1 MeV以上的液体闪烁体探测器方向测得的中子产额为1.04108 sr-1。  相似文献   

19.
中子监测仪对不同能量中子的探测效率是其重要的性能指标,直接影响其测量值的可信度与使用效果。针对中国科学院高能物理研究所生产的高灵敏度区域中子监测仪(HANM型),利用蒙特卡罗软件模拟其探测效率曲线,模拟结果表明该仪器探测效率随能量增加,先上升后下降,其探测效率最高值在1 MeV附近。通过改变模拟条件中的射线入射方向,对比探测效率曲线趋势变化,验证该型仪器的探测效率曲线趋势的可靠性。在此基础上,分别利用D-D,D-T加速器产生2.5 MeV和14 MeV单能中子,对探测效率曲线进行校准与验证,最终获得此型仪器的探测效率曲线。  相似文献   

20.
Based on the facility of the Shanghai Laser Electron Gamma Source (SLEGS),the transmutation for nuclear wastes such as 137Cs and 129I is investigated.It is found that nuclear waste can be transmuted efficiently via photonuclear reaction triggered by gamma photons generated from Compton backscattering between CO2 laser photons and 3.5 GeV electrons.The nuclear activities of 137Cs and 129I are evaluated and compared with the results of transmutation triggered by bremsstrahlung gamma photons driven by ultra intense laser.Due to the better character of gamma photon spectrum as well as the high brightness of gamma photons,the transmutation rate of Compton backscattering method is much higher than that of the bremsstrahlung method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号