首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 171 毫秒
1.
为了研究电磁能量从脉冲功率驱动器到Z箍缩负载的传输与转化过程,采用电路模型描述驱动器关键部件的充放电过程,采用辐射磁流体模型描述负载的动力学过程并获取动态电感和动态电阻参数,建立了驱动器与负载耦合的全电路数值模拟程序.将该程序应用于"强光一号"装置,研究表明,模拟获得的驱动器电压波形、负载电流波形与实验结果符合较好,各段水介质传输线上电磁脉冲宽度逐级压缩,功率逐级放大.在典型的钨丝阵Z箍缩辐射源物理实验条件下,当初级储能电容器充电35 kV时,中储电容处的电磁功率(峰值)为0.23 TW,上升时间(10%—90%)为550 ns,形成线处的电磁功率为0.80 TW,上升时间为160 ns,水介质传输线末端的电磁功率为1.46 TW,上升时间为45 ns.负载电流为1.5 MA,产生的X射线辐射功率为0.58 TW.  相似文献   

2.
为方便描述聚龙一号装置与Z箍缩负载的电磁耦合过程,基于大量电参数实验数据和全电路模拟分析,建立了一个简化的集总电路模型,获得了等效电压波形和等效电阻、电感等集总参量。采用水介质三板输出线出口位置的开路电压作为等效电压,进一步拟合为正弦平方函数,峰值为3.3 MV(当前驱动器充压为65 kV),零到峰值的时间长度为102.5ns。采用简化的流阻抗模型描述磁绝缘传输线内部空间电子流的电流损失效应。将电路程序与零维负载动力学程序耦合模拟,得到了与实验结果符合的负载电流波形,尤其电流波形的前沿和峰值符合较好,分析了电磁能转化为负载动能的过程。  相似文献   

3.
毛重阳  薛创  肖德龙  丁宁 《强激光与粒子束》2020,32(2):025004-1-025004-5
建立了"聚龙一号"驱动器4层绝缘堆和真空区电路模型。在4层绝缘堆入口处,采用预测-校正的计算方法处理4层绝缘堆的输入电流分配问题,避免了复杂的二维电路模拟,既保证了精度,又大大提高了计算效率。将此新模型加入FCM-PTS程序中,与零维负载内爆动力学程序耦合,得到了各层外磁绝缘传输线的电流波形模拟结果,并改善了负载电流峰值的模拟结果与实验结果的一致性。  相似文献   

4.
郭帆  王贵林  邹文康  陈林  谢卫平 《强激光与粒子束》2018,30(12):125001-1-125001-7
聚龙一号装置由24路模块并联组成, 通过调整24路模块中激光触发气体开关的导通时序可实现负载电流波形的精确调节, 以满足磁驱动加载实验所要求的负载电流波形灵活调节的需求。针对聚龙一号装置开展的磁驱动加载实验, 建立了能够描述能量从Marx发生器开始至负载整个传输过程的全电路模型, 开发了相应的电路计算程序, 并基于实验结果对计算程序进行了校验, 电路模拟结果与实验结果符合较好。电路模拟程序的计算效率比采用Pspice软件进行全电路计算的效率显著提高, 其不仅可应用于在给定激光触发气体开关导通时序的情况下对聚龙一号装置的输出特性进行预测和评估, 同时也为负载电流波形调节的方案设计提供了一种有效工具。  相似文献   

5.
MARED程序是模拟Z箍缩内爆过程的二维三温辐射磁流体力学程序,它适用于不同装置条件和不同负载参数.利用MARED程序对Z箍缩内爆进行模拟,结合丝阵Z箍缩实验分析表明:相同负载质量条件下,钨丝阵内爆产生的X射线辐射功率远大于铝丝阵产生的X射线功率;相同负载电流条件下,负载质量越大,计算得到的X射线功率越低;X射线功率随着负载电流增加而增加.MARED程序能够较好地反映Z箍缩内爆动力学过程,特别是不稳定性发展的二维图像,能够给出与不稳定性简化模型的理论分析及实验结果定性一致的演化规律.MARED程序模拟丝阵填充泡沫形成辐射场的初步计算得到了与Sandia实验室模拟Z装置上丝阵填充泡沫定性一致的结果.  相似文献   

6.
Z箍缩内爆的MARED程序1维模拟分析   总被引:5,自引:4,他引:1       下载免费PDF全文
 研制可靠的数值模拟工具对Z箍缩内爆产生X光辐射过程进行理论研究、实验分析以及负载设计至关重要。介绍了2维三温辐射磁流体力学程序(MARED)的物理方案,给出了MARED程序的1维检验结果,验证表明MARED程序适用不同装置条件、不同负载参数。结合丝阵Z箍缩实验的数值模拟和分析表明:相同负载质量条件下,钨丝阵内爆产生的X光辐射功率远大于铝丝阵产生的X光功率;相同负载电流条件下,负载质量越大,计算得到X光功率越低;X光功率随着负载电流增加而增加。  相似文献   

7.
国内首台多路并联超高功率脉冲装置"聚龙一号"(PTS)已被用于磁驱动准等熵实验研究,其分时分组放电特点为开展材料的动高压可控路径加载研究提供了便利.磁驱动准等熵实验的物理设计和结果分析需要依赖可靠的数值模拟平台.本文介绍了含强度计算的一维磁流体力学程序MADE1D的物理模型和程序特点,讨论了"聚龙一号"装置两种不同电流波形驱动条件下准等熵实验的模拟情况.结果显示,MADE1D程序能够较好地反映电磁力引起的压缩波在样品内部的产生、传播及发展过程,计算获得的"样品/窗口"界面速度同实验测量结果符合较好.分析发现,电流波形是影响加载过程的重要因素.对于目前使用的带状电极,电流上升率不宜超过40 k A/ns,否则可能在厚度1.2 mm以上的铝样品中产生冲击.  相似文献   

8.
 将爆磁压缩等效为电流源的方法,对爆磁压缩发生器通过脉冲变压器对脉冲形成线充电进行了理论分析,得出爆磁压缩发生器在负载上产生电流波形(简称负载电流)为直线情况和任意电流波形情况下充电电流和充电电压的表达式。分析表明变压器耦合互感与负载电流随时间变化增长率是脉冲形成线充电的两个重要参数,脉冲形成线第一个充电电压峰值与变压器的耦合互感和负载电流波形斜率成正比,负载电流波形斜率的变化可以改变充电电压峰值的时间,斜率不断增加可以延长第一个充电电压峰值时间,从而可能增加充电电压的幅值,提高爆磁压缩发生器能量的利用效率。  相似文献   

9.
一种螺旋型Blumlein线的阻抗特性分析   总被引:2,自引:1,他引:1       下载免费PDF全文
提出了一种结构紧凑的长脉冲发生器,该发生器的螺旋型Blumlein线由内导体(含磁体)、螺旋型中筒和外导体(含磁体)构成,该结构实现了螺旋型Blumlein线和Tesla变压器的一体化。通过对螺旋型Blumlein线的波传输过程分析,给出了慢波系数、开关闭合电流、用于描述形成线闭合开关处界面上波行为的变量因子等参数的计算公式。采用PIC软件对螺旋型Blumlein线的部分波传输过程进行数值模拟,慢波系数等参数的模拟值与计算值基本相符。进行了恒阻抗负载下螺旋型Blumlein线的原理性实验,实验得到的负载波形与编程计算得到的波形基本吻合。  相似文献   

10.
 提出了一种结构紧凑的长脉冲发生器,该发生器的螺旋型Blumlein线由内导体(含磁体)、螺旋型中筒和外导体(含磁体)构成,该结构实现了螺旋型Blumlein线和Tesla变压器的一体化。通过对螺旋型Blumlein线的波传输过程分析,给出了慢波系数、开关闭合电流、用于描述形成线闭合开关处界面上波行为的变量因子等参数的计算公式。采用PIC软件对螺旋型Blumlein线的部分波传输过程进行数值模拟,慢波系数等参数的模拟值与计算值基本相符。进行了恒阻抗负载下螺旋型Blumlein线的原理性实验,实验得到的负载波形与编程计算得到的波形基本吻合。  相似文献   

11.
PTS装置Z箍缩负载设计分析   总被引:1,自引:0,他引:1       下载免费PDF全文
丁宁  张扬  宁成  束小建  肖德龙 《物理学报》2008,57(5):3027-3037
介绍了PTS装置丝阵负载设计思路,用简化的薄壳模型(零维)和辐射磁流体力学模型(一维)数值模拟了丝阵Z箍缩内爆过程,给出了PTS丝阵负载设计参数,分析了初步优化结果,确定了优化选择的箍缩常数.经脉冲功率驱动器与负载优化匹配设计,PTS实验平台能够获得100TW量级的X射线功率,最佳插头能量转换效率10%.预计PTS实验平台的X射线输出能力基本达到Saturn装置长脉冲模式放电的水平.结果将为PTS开展Z箍缩研究提供有价值的参考. 关键词: PTS装置 Z箍缩丝阵负载 零维薄壳模型 一维辐射磁流体力学数值模拟  相似文献   

12.
为了对即将建成的PTS装置的实验能力进行分析,对装置的工作模式及波形调节能力进行了分析。装置具有三种工作模式:短脉冲模式、长脉冲模式和波形调节模式。在不同的工作模式下,装置可以进行不同负载的实验研究。在基本工作模式下,在15 nH负载上输出前沿90 ns、幅值8~10 MA脉冲电流。通过电路模拟,对装置在三种工作模式下预计的负载电流输出进行了分析,短脉冲模式下装置负载电流的上升时间约90 ns,长脉冲模式时约200 ns,波形调节模式时可以达到400 ns。模拟结果表明,通过调节激光触发气体开关的触发方式和脉冲输出开关及装置其他参数,PTS装置可以输出脉冲前沿100~400 ns、波形形状在一定范围可调的强电流脉冲。  相似文献   

13.
准等熵压缩实验技术已用来研究材料在高压下的状态方程。基于聚龙一号装置平台,实现对样品的准等熵压缩和超高速飞片发射,进行了一系列实验来加深对负载构型的理解。通过对负载结构的设计,研究了构设电极尺寸与电极间隙对磁应力的大小与分布的影响。基于模拟和实验结果,带状线负载结构可以很好地提高磁压和提升装置的运行水平,其电极表面磁压分布也具有良好的均匀性和平面性。目前为止,已经可以用带状线负载在聚龙一号装置上获得峰值压力高达约100 GPa的准等熵压缩,并获得速度超过10 km/s的超高速飞片。  相似文献   

14.
在聚龙一号装置(PTS装置)上开展了系列波形调节实验,成功在负载上输出脉冲上升时间达到600ns、峰值电流大于5.0 MA的电流。聚龙一号装置在同步放电情况(短脉冲模式)下,负载电流的上升时间约90ns,峰值电流约10.0 MA。波形调节通过装置24台激光触发气体开关分时放电、脉冲输出开关短接等技术调整,实现负载上长上升时间的脉冲电流输出。波形调节根据需要实现的电流波形形状,通过全电路模拟计算,调整激光触发气体开关的触发时序和脉冲输出开关状态,在相应负载上输出接近需求的实验波形。聚龙一号装置波形调节实验研究表明,输出电流脉冲的前沿的最大值取决于24台激光触发气体开关最早触发时刻和最晚触发时刻的时间差,该时间差受制于激光触发气体开关的正常触发。激光触发气体开关能否被正常触发,除了取决于进入开关触发间隙的触发激光能量外,还取决于开关充气压力和加载于开关两端的电位差,该电位差与相关两路的渡越时间相关。通过波形调节研究,聚龙一号装置具备在不同实验负载上输出不同上升时间、不同波形形状的脉冲电流的能力。  相似文献   

15.
The report presents the results of the development and field testing of a mobile test facility based on a helical magnetic cumulative generator (MCGTF). The system is designed for full-scale modeling of lightning currents to study the safety of power plants of any type, including nuclear power plants. Advanced technologies of high-energy physics for solving both engineering and applied problems underlie this pilot project. The energy from the magnetic cumulative generator (MCG) is transferred to a high-impedance load with high efficiency of more than 50% using pulse transformer coupling. Modeling of the dynamics of the MEG that operates in a circuit with lumped parameters allows one to apply the law of inductance output during operation of the MCG, thus providing the required front of the current pulse in the load without using any switches. The results of field testing of the MCGTF are presented for both the ground loop and the model load. The ground loop generates a load resistance of 2–4 Ω. In the tests, the ohmic resistance of the model load is 10 Ω. It is shown that the current pulse parameters recorded in the resistive-inductive load are close to the calculated values.  相似文献   

16.
陡化前沿Marx发生器的阻抗特性   总被引:2,自引:2,他引:0  
 利用50 kV无感电容器与固体电阻制作了10级陡化前沿Marx发生器,实现了电容储能型脉冲功率调制系统的小型化。使用不同阻值的水电阻负载研究了发生器的阻抗特性,并进一步制作了金属膜电阻负载进行实验,测定90 Ω负载可以使发生器处于临界阻尼放电状态,从而确定发生器的内部阻抗约为45 Ω。当充电电压为40 kV时,在金属膜电阻负载上得到了幅值约为210 kV,脉宽约为40 ns,前沿约为5 ns的快前沿高压脉冲。利用此发生器成功地驱动了强流二极管,当二极管阴阳极间距为15 mm时,在30 kV充电情况下,其输出电压约为154 kV,束流约为1 kA。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号