首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A rationally designed, pyrene-spiropyran hybrid Ca2+ sensor (Py-1) with enhanced fluorescence intensity compared to a standalone spiropyran analogue is presented. Importantly, Py-1 retains the characteristic red emission profile of the spiropyran, while fibre-based photostability studies show the sensor is stable after multiple cycles of photoswitching, without any sign of photodegradation. Such properties are of real advantage for cell-based sensing applications. An interesting observation is that, Py-1 presents with two excitation options; direct green excitation (532 nm) of the photoswitch for a red emission, and UV excitation (344 nm) of the component pyrene, which gives rise to distinct blue and red emissions. This proof-of-concept hybrid sensing system presents as a more general approach to brighter spiropyran-based sensors.  相似文献   

2.
We have employed diheteroarylethenes as acceptors for photochromic FRET (pcFRET), a technique introduced for the quantitative determination of fluorescence resonance energy transfer (FRET). In pcFRET, the fluorescent emission of the donor is modulated by cyclical transformations of a photochromic acceptor. Light induces a reversible change in the structure and, concomitantly, in the absorption properties of the acceptor. Only the closed forms of the selected diheteroarylethenes 2a and 2b have an absorption band overlapping the emission band of the donor, 1. The corresponding variation in the overlap integral (and thus critical transfer distance R(o)) between the two states provides the means for reversibly switching the process of FRET on and off, allowing direct and repeated evaluation of the relative changes in the donor fluorescence quantum yield. The diheteroarylethenes demonstrate excellent stability in aqueous media, an absence of thermal back reactions, and negligible fatigue. The equilibration of these systems after exposure to near-UV or visible light follows simple monoexponential kinetics. We developed a general conceptual scheme for such coupled photochromic-FRET reactions, allowing quantitative interpretations of the photostationary and kinetic data, from which the quantum yields for the cyclization and cycloreversion reactions of the photochromic acceptor were calculated.  相似文献   

3.
Multiple copies ( approximately 20) of Escherichia coli maltose binding protein (MBP) were coordinated to luminescent semiconductor quantum dots (QDs) via a C-terminal oligohistidine segment. The MBP was labeled with a sulfo-N-hydroxysuccinimide-activated photochromic BIPS molecule (1',3-dihydro-1'-(2-carboxyethyl)-3,3-dimethyl-6-nitrospiro[2H-1-benzopyran-2,2'-(2H)-indoline]) at two different dye-to-MBP ratios; D/P = 1 and 5. The ability of MBP-BIPS to modulate QD photoluminescence was tested by switching BIPS from the colorless spiropyran (SP) to the colored merocyanine (MC) using white light (>500 nm) or UV light ( approximately 365 nm), respectively. QDs surrounded by MBP-BIPS with D/P = 1 were quenched on average approximately 25% with consecutive repeated switches, while QDs surrounded by MBP-BIPS with D/P = 5 were quenched approximately 60%. This result suggests a possible use of BIPS-labeled proteins in QD-based nanostructures as part of a threshold switch or other biosensing device.  相似文献   

4.
Self-assembled nanotapes of a few tailor-made oligo(p-phenylenevinylene)s (OPVs) have been prepared and used as supramolecular donor scaffold to study the fluorescence resonance energy transfer (FRET) to a suitable acceptor. In nonpolar solvents, FRET occurs with nearly 63-81% efficiency, exclusively from the self-assembled OPVs to entrapped Rhodamine B, resulting in the quenching of the donor emission with concomitant formation of the acceptor emission at 625 nm. The efficiency of FRET is considerably influenced by the ability of the OPVs to form the self-assembled aggregates and hence could be controlled by structural variation of the molecules, and polarity of the solvent. Most importantly, FRET could be controlled by temperature as a result of the thermally reversible self-assembly process. The FRET efficiency was significantly enhanced (ca. 90%) in a xerogel film of the OPV1 which is dispersed with relatively less amount of the acceptor (33 mol %), when compared to that of the aggregates in dodecane gel. FRET is not efficient in polar solvents due to weak self-organization of the chromophores. These results indicate that energy transfer occurs exclusively from the self-assembled donor and not directly from the individual donor molecules. The present study illustrates that the self-assembly of chromophores facilitates temperature and solvent controlled FRET within pi-conjugated nanostructures.  相似文献   

5.
Two or eight zinc triphenyl porphyrins were conjugated with Zn-phthalocyanine or H2-phthalocyanine to form ZnPc-(ZnTPP)2, ZnPc-(ZnTPP)8, H2Pc-(ZnTPP)2 and H2Pc-(ZnTPP)8. Energy transfers from the porphyrin moiety to phthalocyanine part were quantitatively studied with the modality of fluorescence resonance energy transfer (FRET). By measuring the fluorescence increment from the phthalocyanine moiety and the decrease from porphyrin part under selective excitation at the B band of the porphyrin part in those conjugated compounds and their equimolar mixture of compositions, energy transfer efficiencies were estimated to be 90% for H2Pc-(ZnTPP)8 and ZnPc-(ZnTPP)8, and 60%, 30% for ZnPc-(ZnTPP)2 and H2Pc-(ZnTPP)2, respectively.  相似文献   

6.
Constructing molecular switches based on supramolecular assembly strategy is a research hotspot. In this work, we constructed an all visible-light-regulated supramolecular photo-switch based on pyridinium-modified diarylethene derivative (DTE-Me) and cucurbit[8]uril (CB[8]). CB[8] not only accelerated the photochromic process under 365 nm ultraviolet light but also shifted the absorption of open formed DTE-Me to the visible region, which led to efficient photocyclization under 450 nm visible light irradiation, while DTE-Me and DTE-Me/CB[7] remained unchanged under the same irradiating condition. Moreover, the complexation with CB[8] could induce the strong thermally activated delayed fluorescence (TADF) of guest molecular at 550 nm, which further shifted to 670 nm through two-step sequential energy transfer with sulforhodamine B (SRB) and Cy5. This energy transfer process could also be regulated with visible light, and the application for information encryption was also demonstrated. This assembly provides a convenient approach to construct all visible light-regulated TADF photo-switch.  相似文献   

7.
The unique optoelectronic properties of semiconductor quantum dots (QDs) make them well-suited as fluorescent bioprobes for use in various biological applications. Modification of CdSe/ZnS QDs with biologically relevant molecules provides for multipotent probes that can be used for cellular labeling, bioassays, and localized optical interrogation by means of fluorescence resonance energy transfer (FRET). Herein, we demonstrate the use of red-emitting streptavidin-coated QDs (QD605) as donors in FRET to introduce a competitive displacement-based assay for the detection of oligonucleotides. Various QD–DNA bioconjugates featuring 25-mer probe sequences diagnostic of Hsp23 were prepared. The single-stranded oligonucleotide probes were hybridized to dye-labeled (Alexa Fluor 647) reporter sequences, which were provided for a FRET-sensitized emission signal due to proximity of the QD and dye. The dye-labeled sequence was designed to be partially complementary and include base-pair mismatches to facilitate displacement by a more energetically favorable, fully complementary recognition motif embedded within a 98-mer displacer sequence. Overall, this study demonstrates proof-of-concept at the nM level for competitive displacement hybridization assays in vitro by reduction of fluorescence intensity that directly correlates to the presence of oligonucleotides of interest. This work demonstrates an analytical method that could potentially be implemented for monitoring of intracellular gene expression in the future.  相似文献   

8.
Fluorescence resonance energy transfer (FRET) is a popular tool to study equilibrium and dynamical properties of polymers and biopolymers in condensed phases and is now widely used in conjunction with single molecule spectroscopy. In the data analysis, one usually employs the F?rster expression which predicts (l/R 6) distance dependence of the energy transfer rate. However, critical analysis shows that this expression can be of rather limited validity in many cases. We demonstrate this by explicitly considering a donor-acceptor system, polyfluorene (PF6)-tetraphenylporphyrin (TPP), where the size of both donor and acceptor is comparable to the distance separating them. In such cases, one may expect much weaker distance (as l/R 2 or even weaker) dependence. We have also considered the case of energy transfer from a dye to a nanoparticle. Here we find l/R 4 distance dependence at large separations, completely different from F?rster. We also discuss recent application of FRET to study polymer conformational dynamics. Dedicated to Prof J Gopalakrishnan on his 62nd birthday.  相似文献   

9.
A novel assay of chromium(III) ion based on upconversion fluorescence resonance energy transfer was designed and established. Lysine-capped NaYF4:Yb/Er upconversion nanoparticles (UCNPs) and dimercaptosuccinic acid-capped gold nanoparticles (AuNPs) were used as the energy donor and acceptor, respectively. They were bound together via electrostatic interaction, resulting in the quenching of the fluorescence of UCNPs by AuNPs. Chromium(III) ions can specifically and strongly interact with dimercaptosuccinic acid that was modified on the surface of AuNPs, leading to the separation of AuNPs from UCNPs and the recovery of fluorescence of UCNPs. The fluorescence recovery of UCNPs showed a good linear response to Cr3+ concentration in the range of 2–500 nM with a detection limit of 0.8 nM. This method was further applied to determine the levels of Cr3+ in urine. Compared with other fluorescence methods, current method displayed very high sensitivity and signal-to-noise ratio because of the excitation of near-infrared that can eliminate autofluorescence, providing a promising examination of biological samples for the diagnostic purposes.  相似文献   

10.
The potential for a simultaneous two-colour diagnostic scheme for nucleic acids operating on the basis of fluorescence resonance energy transfer (FRET) has been demonstrated. Upon ultraviolet excitation, two-colours of CdSe/ZnS quantum dots with conjugated oligonucleotide probes act as energy donors yielding FRET-sensitized acceptor emission upon hybridization with fluorophore (Cy3 and Alexa647) labeled target oligonucleotides. Energy transfer efficiencies, Förster distances, changes in quantum yield and lifetime, and signal-to-noise with respect to non-specific adsorption have been investigated. The dynamic range and limit-of-detection are tunable with the concentration of QD-DNA conjugate. The Cy3 and Alexa647 acceptor schemes can detect target from 4 to 100% or 10 to 100% of the QD-DNA conjugate concentration, respectively. Nanomolar limits of detection have been demonstrated in this paper, however, results indicate that picomolar detection limits can be achieved with standard instrumentation. The use of an intercalating dye (ethidium bromide) as an acceptor to alleviate non-specific adsorption is also described and increases signal-to-noise from S/N < 2 to S/N = 9-10. The ethidium bromide system had a dynamic range from 8 to 100% of the QD-DNA conjugate concentration and could detect target in a matrix containing an excess of non-complementary nucleic acid.  相似文献   

11.
Manuel Natali 《Tetrahedron》2010,66(38):7612-84
A spiropyran-based fluorescent and photoregenerable receptor, that is, selective towards zinc(II) ions over a series of biologically and environmentally relevant cations has been designed and synthesized. The complex formation gives rise to colour changes that are visible to the naked eye and reversible upon visible light irradiation. 1H NMR studies confirm that the closed form is converted to the open trans-merocyanine complex upon addition of zinc ions.  相似文献   

12.
This article describes the design and preparation of a novel fluorescence resonance energy transfer (FRET)-based ratiometric sensor with the polymer nanoparticle as scaffold for detecting Hg2+ in aqueous media. In this study, a fluorescent dye fluorescein isothiocyanate (FITC, served as the donor) and a spirolactam rhodamine derivative (SRHB, served as mercury ion probe) were covalently attached onto polyethylenimine (PEI) and polyacrylic acid (PAA) respectively; and a ratiometric sensing system was then formed through the deposition of the donor- and probe-containing polyelectrolytes onto the negatively charged polymer particles via the layer-by-layer approach. The ratiometric fluorescent signal change of the system is based on the intra-particle fluorescence resonance energy transfer (FRET) process modulated by mercury ions. Under optimized structural and experimental conditions, the particle-based detection system exhibits stable response for Hg2+ in aqueous media. More importantly, in this newly developed particle-based detection system formed by LBL approach, varied numbers of the PAA/PEI layers which served as the spacer could be placed between the donor-containing layer and the probe-containing layer, hence the donor–acceptor distance and energy transfer efficiency could be effectively tuned (from ca. 25% to 76%), this approach has well solved the problem for many particle-based FRET systems that the donor–acceptor distance cannot be precisely controlled. Also, it is found that the ratiometric sensor is applicable in a pH range of 4.6–7.3 in water with the detection limit of 200 nM. This approach may provide a new strategy for ratiometric detection of analytes in some environmental and biological applications.  相似文献   

13.
14.
15.
A homogeneous non-competitive assay principle for measurement of small analytes based on quenching of fluorescence is described. Fluorescence resonance energy transfer (FRET) occurs between the donor, intrinsically fluorescent europium(III)-chelate conjugated to streptavidin, and the acceptor, quencher dye conjugated to biotin derivative when the biotin-quencher is bound to Eu-streptavidin. Fluorescence can be measured only from those streptavidins that are bound to biotin of the sample, while the fluorescence of the streptavidins that are not occupied by biotin are quenched by quencher-biotin conjugates. The quenching efficiencies of the non-fluorescent quencher dyes were over 95% and one dye molecule was able to quench the fluorescence of more than one europium(III)-chelate. This, however, together with the quadrovalent nature of streptavidin limited the measurable range of the assay to 0.2-2 nmol L−1. In this study we demonstrated that FRET could be used to design a non-competitive homogeneous assay for a small analyte resulting in equal performance with competitive heterogeneous assay.  相似文献   

16.
A novel fluorescent switch based on rhodamine B and photochromic diarylethene, 1-[2-methyl-5-(4-methoxylphenyl)-3-thienyl]-2-[2-methyl-5-(4-rhodamine B hydrazine-Schiff base-phenyl)-3-thienyl]perfluorocyclopentene (1), has been successfully synthesized through the condensation of rhodamine B hydrazine and 1-[2-methyl-5-(4-methoxylphenyl)-3-thienyl]-2-[2-methyl-5-(4-formylphenyl)-3-thienyl]perfluorocyclopentene. UV and FL measurements reveal that the compound exhibits good photochromic properties responsive to proton and optic dual inputs. Upon irradiation with 297 nm light, the colorless solution of compound 1 turns blue, while the blue solution becomes colorless after irradiated with visible light (λ>450 nm). Furthermore, upon an addition of H+, the fluorescence resonance energy transfers from the rhodamine unit (FRET donor) to the closed-ring diarylethene unit (FRET acceptor), although no energy transfer occurs when the diarylethene is in the open-ring form. The emission intensity of the rhodamine can be modulated with proton and UV/vis light and molecular-level signal communication has been constructed, indicating high potentials of the compound in molecular switches or naked eye recognition systems.  相似文献   

17.
18.
An inhibition assay method was developed based on the modulation in the FRET efficiency between quantum dots (QDs) and gold nanoparticles (AuNPs) in the presence of the molecules which inhibit the interactions between QD- and AuNP-conjugated biomolecules. For the functionalization, AuNPs were first stabilized by chemisorption of n-alkanethiols and then capped with the first generation polyamidoamine (G1 PAMAM) dendrimers. By employing a streptavidin-biotin couple as a model system, avidin was quantitatively analyzed as an inhibitor by sensing the change in photoluminescence (PL) quenching of SA-QDs by biotin-AuNPs. The detection limit for avidin was about 10 nM. It is anticipated that the PL quenching-based sensing system can be used for the quantitative analysis and high throughput screening of molecules which inhibit the specific biomolecular interactions.  相似文献   

19.
Shan Hu 《Talanta》2009,80(2):454-12607
A novel method to significantly enhance fluorescence resonance energy transfer (FRET) signal which occurred from fluoresceine isothiocyanate (FITC) to Dylight 549 was studied in this paper. Streptavidin was labeled with the donor fluorophore FITC and biotinamide was conjugated to the acceptor Dylight 549. When biotinamide bound to streptavidin, FRET would occur from FITC to Dylight 549 while a remarkable fluorescence enhancement of streptavidin-FITC was observed. The fluorescence enhancement of streptavidin-FITC in the presence of biotin was utilized in the FRET system to obtain higher fluorescence signal. Increase of fluorescence intensity of FITC and decrease of Dylight 549 depended on the concentration of competitive biotin. A homogeneous analysis method was established based on the fluorescence recovery of FITC in the FRET system with fluorescence enhancement. This method is highly sensitive and simple to determine the concentration of biotin. The detection limit for biotin was 0.5 nM and the linear range of the assay was 0.8-9.8 nM. The response time is no more than 15 min during the one-step assay due to the high affinity between streptavidin and biotin.  相似文献   

20.
The photochromic behavior of two newly synthesized diarylethenes is here presented. The compounds studied are the symmetrical (1-benzyl-3,4-bis(2-methylbenzo[b]thiophen-3-yl)-[1H]-2,5-dihydropyrrol-2,5-dione) and the unsymmetrical (1-benzyl-3-(2-methylbenzo[b]thiophen-3-yl)-4-(2,5-dimethyl-3-thienyl)-[1H]-2,5-dihydropyrrol-2,5-dione). Upon stimulation with UV or violet light, these compounds become red-colored due to photocyclization and cyclorevert to the light yellow open form upon irradiation with visible light. In this work, absorption and fluorescence spectra, molar absorption coefficients of the ethenic and cyclized forms, fluorescence quantum yields and photochemical quantum yields of both the forward and back photoreactions were determined. Temperature, excitation wavelength and solvent effects were explored. The symmetrical compound was found to be a bistable photochrome. In contrast, the unsymmetrical molecule resulted unsuitable as photochrome because of side degradation processes occurring in competition with cyclization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号