首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Intersublevel transitions in semiconductor quantum dots are transitions of a charge carrier between quantum dot confined states. In InAs/GaAs self-assembled quantum dots, optically active intersublevel transitions occur in the mid-infrared spectral range. These transitions can provide a new insight on the physics of semiconductor quantum dots and offer new opportunities to develop mid-infrared devices. A key feature characterizing intersublevel transitions is the coupling of the confined carriers to phonons. We show that the effect of the strong coupling regime for the electron–optical phonon interaction and the formation of mixed electron–phonon quasi-particles called polarons drastically affect and control the dynamical properties of quantum dots. The engineering of quantum dot relaxation rates through phonon coupling opens the route to the realization of new devices like mid-infrared polaron lasers. We finally show that the measurement of intersublevel absorption is not limited to quantum dot ensembles and that the intersublevel ultrasmall absorption of a single quantum dot can be measured with a nanometer scale resolution by using phonon emission as a signature of the absorption. To cite this article: P. Boucaud et al., C. R. Physique 9 (2008).  相似文献   

2.
MBE自组织生长多层竖直自对准InAs量子点结构的研究   总被引:1,自引:0,他引:1       下载免费PDF全文
朱东海  范缇文 《发光学报》1997,18(3):228-231
利用MBE方法在(001)GaAs衬底上生长了多层竖直自对准InAs量子点结构。透射电子显微镜的观察表明,多层量子点成一系列柱状分布。同单层量子点相比,多层量子点的光荧光谱线发生红移。这表明由于量子点中载流子波函数的扩展和交迭,柱中量子点之间有耦合现象发生。光荧光谱线半高宽随温度的反常变化说明载流子还会在邻近柱中隧穿.  相似文献   

3.
We have developed a theory of a transient intraband light absorption by semiconductor quantum dots. This absorption plays an important role in the two-pulse pump-probe method, which enables determining the energy relaxation rates of electron-hole excited states. We have considered all possible schemes of this process wherein the carrier frequency of optical pump pulses is close to the resonance with the interband transition of the quantum-dot electronic subsystem, while the carrier frequency of probe pulses is resonant to the intraband transition. For ensembles of identical and size-distributed quantum dots, the probe pulse energy absorption induced by the pump pulse is analyzed in relation to the delay time between the pulses. We have found that, under certain conditions, this dependence can be described by a single, two, or three exponentials. The exponents of the exponentials are proportional to the energy relaxation rates of electron-hole excited states.  相似文献   

4.
Recently, attempts have been made by some researchers to improve the efficiency of quantum dot solar cells by incorporating different types of quantum dots. In this paper, the photocurrent density has been obtained considering the absorption spectra of ideal cubic dots. The effects of quantum dot size dispersion on the spectral response of the intrinsic region of a GaAs–InAs quantum dot solar cell have been studied. The dependence of the spectral response of this region on the size of quantum dots of such solar cell has also been investigated. The investigation shows that for smaller quantum dot size dispersion, the spectral response of the intrinsic region of the cell increases significantly. It is further observed that by enlarging the quantum dot size it is possible to enhance the spectral response of such solar cells as it causes better match between absorption spectra of the quantum dots and the solar spectrum. These facts indicate the significant role of quantum dot size and size dispersion on the performance of such devices. Also, the power conversion efficiency of such solar cell has been studied under 1 sun, AM 1.5 condition.  相似文献   

5.
The excitonic absorption spectrum of a single quantum dot is investigated theoretically and experimentally. The spectrum is determined by an interacting electron-valence-hole complex. We show that the mixing of quantum configurations by two-body interactions leads to distinct absorption spectra controlled by the number of confined electronic shells. The theoretical results are compared with results of photoluminescence excitation spectroscopy on a series of single self-assembled In0.60Ga0.40As quantum dots.  相似文献   

6.
We study the electronic structure of a single self-assembled InAs quantum dot by probing elastic single-electron tunneling through a single pair of weakly coupled dots. In the region below pinch-off voltage, the nonlinear threshold voltage behavior provides electronic addition energies exactly as the linear, Coulomb blockade oscillation does. By analyzing it, we identify the s and the p shell addition spectrum for up to six electrons in the single InAs dot, i.e., one of the coupled dots. The evolution of the shell addition spectrum with magnetic field provides Fock-Darwin spectra of the s and p shells.  相似文献   

7.
We review the investigation of a single quantum dot driven by a strong optical field. By coherent pump-probe spectroscopy, we demonstrate the Autler–Townes splitting and Mollow absorption spectrum in a single neutral quantum dot. Furthermore, we also show the typical Mollow absorption spectrum by driving a singly charged quantum dot in a strong optical coupling regime. Our results show all the typical features of an isolated atomic system driven by a strong optical field, such as the AC stark effect, Rabi side bands and optical gain effect, which indicate that both neutral and charged quantum dots maintain the discrete energy level states even at high optical field strengths.  相似文献   

8.
Raman scattering on optical phonons in Si/Ge/Si structures with Ge quantum dots grown by molecular beam epitaxy at low temperatures 200–300°C has been investigated. A pseudomorphic state of an array of Ge quantum dots to a Si matrix with an ideally sharp interface has been obtained. Features associated with the inelastic relaxation of mechanical stresses have been revealed in the Raman spectrum. Two mechanisms of stress relaxation are separated. It has been shown that the spectrum of the electronic states of the array differs significantly from the set of the discrete levels of a single quantum dot, because the relaxation is inhomogeneous.  相似文献   

9.
Self-assembled GeSiC dots stacked on a Ge hut-cluster layer buried in Si have been investigated. The critical thickness for formation of GeSiC dots is reduced owing to the strain fields from the buried hut-clusters. By utilizing the stacked structure, the dot size is decreased and the uniformity is improved. The highest density of the GeSiC dots with stacked structures is 7.4×1010 cm−2, which is six times larger than that of single GeSiC dots. The formation of the self-assembled GeSiC dots is strongly influenced by being stacked with buried Ge dots as well as C incorporation.  相似文献   

10.
H. Ju  Q. Gong 《Optics Communications》2006,259(2):861-867
We investigate carrier dynamics in a passive InAs/InP quantum dot (QD) waveguide using 255 fs optical pulses at a central wavelength of 1568 nm. We observe strong anisotropy of absorption saturation for different polarizations. Pump-probe measurements indicate the presence of carrier relaxation dynamics on a timescale in the order of tens of picoseconds due to cascaded relaxation of carriers generated by two-photon absorption (TPA) from the bulk region to the QDs via the wetting layer. These relaxation timescales are much longer than in QD amplifiers. Our observations are supported by a rate-equation model which includes TPA, showing good agreement with the pump-probe measurements.  相似文献   

11.
Single and stacked layers of Ge/Si quantum dots were grown in SiO2 windows patterned by electron-beam lithography on oxidized Si (0 0 1) substrates. The growth of a silicon buffer layer prior to Ge deposition is found to be an additional parameter for adjusting the Ge-dot nucleation process. We show that the silicon buffer layer evolves towards [1 1 3]-faceted pyramids, which reduces the area of the topmost (0 0 1) surface available for Ge nucleation. By controlling the top facet area of the Si buffer layers, only one dot per circular window and a high cooperative arrangement of dots on a striped window can be achieved. In stacked layers, the dot homogeneity can be improved through the adjustment of the Ge deposited amount in the upper layers. The optical properties of these structures measured by photoluminescence spectroscopy are also reported. In comparison with self-assembled quantum dots, we observed, both in single and stacked layers, the absence of the wetting-layer component and an energy blue shift, confirming therefore the dot formation by selective growth.  相似文献   

12.
We investigate the electronic intraband absorption in quantum wells with a strong lateral random potential, realized for example by modulation doping with a thin spacer layer. In such systems, electrons become in-plane localized in isolated potential minima and behave like an inhomogeneous array of natural quantum dots. When excited with a coherent light field, the dots respond as individual oscillators, which are however coupled by dynamic dipole–dipole interactions. The absorption spectrum is then determined by the interplay of the single dot properties (related to the disorder potential) and the many-particle Coulomb interactions. Using a simple model for the single-particle states, we calculate the absorption spectrum as a function of the electron density. In the case of light polarized perpendicular to the layer, we find with increasing density a dramatic line narrowing (associated with a collective excitation of the electrons) and a depolarization blue shift. For in-plane polarized light, the peak is shifted to the red. Our theory also applies to far-infrared absorption experiments in artificial quantum dot arrays.  相似文献   

13.
We have investigated the differential capacitance between two stacked, circular quantum dots. An expression defining such differential capacitance has been derived on the basis of that for the self-capacitance of a single quantum dot. By means of a self-consistent simulation we have obtained numerical results showing that the differential capacitance between the two dots is strongly influenced by shell-filling effects, and that the classical limit of the parallel-plate capacitor is retrieved when the two dots are in close proximity. Our results represent a contribution to the effort for the definition of a capacitance matrix for a complex system of quantum dots.  相似文献   

14.
We have investigated the ultrafast carrier dynamics in Molecular Beam Epitaxy (MBE)-grown InAs/InGaAs/GaAs quantum dots emitting at 1.3 μm by means of time resolved photoluminescence upconversion measurements with a time resolution of about 200 fs. The detection energies scan the spectral region from the energy of the quantum dot excitonic transition up to the barrier layer absorption edge. We found, under high excitation intensity, that the intrinsic electronic states are populated mainly by carriers directly captured from the barrier.  相似文献   

15.
SiGe quantum dots (QDs) grown by ultra-high vacuum chemical vapor deposition using H2 and He carrier gases are investigated and compared. SiGe QDs using He carrier gas have smaller dot size with a better uniformity in terms of dot height and dot base as compared to the H2 carrier gas. There is a higher Ge composition and less compressive strain in the SiGe QDs grown in He than in H2 as measured by Raman spectroscopy. The Ge content is higher for He growth than H2 growth due to hydrogen induced Si segregation and the lower interdiffusivity caused by the more strain relaxation in the He-grown SiGe dots. The photoluminescence also confirms more compressive strain for H2 growth than He growth. Hydrogen passivation and Ge-H cluster formation play an important role in the QDs growth.  相似文献   

16.
A density matrix approach has been employed to study analytically the absorption spectra of small semiconductor quantum dots under the strong confinement regime. The results are obtained for a single quantum dot (SQD) as well as for inhomogeneous distribution of quantum dots (IQDs) with Gaussian distribution of quantum dot sizes. A numerical analysis has been made for a SQD and IQDs in a CdS crystal with data taken from recent experimental work. A negative change in the absorption coefficient occurs in the shorter pump wavelength side of the spectrum due to the biexcitonic contribution. The wavelength at which crossover from positive to negative values of the change in absorption coefficient occurs is found to depend upon both the QD size as well as the excitation intensity. The results agree satisfactorily with the experimental observations in small CdS quantum dots.  相似文献   

17.
A new mechanism of the intraband carrier relaxation in quantum dots embedded into a heterostructure at a relatively large distance from its doped elements is proposed. The relaxation process is related to the coupling between the electronic subsystem of a quantum dot and surface plasmon-phonon excitations of the doped components of the heterostructure via the electric potential produced by these excitations. It is found that, in layered heterostructures, the dispersion relations of the surface plasmon-LO-phonon modes display critical points giving rise to pronounced singularities in the relaxation rate spectra. The estimates of the relaxation rates for InAs quantum dots embedded into a GaAs heterostructure have shown high efficiency of the proposed mechanism even when the quantum dots are located at a distance of up to 100 nm from the doped regions of the heterostructure. When this distance lies in the range of a few tens of nanometers, this mechanism appears to be predominant. Possible manifestations of the relaxation mechanism under consideration in the photoluminescence spectra of quantum dots are discussed.  相似文献   

18.
The efficiency of the energy conversion devices depends in many ways on the materials used and various emerging cost-effective nanomaterials have promised huge potentials in highly efficient energy conversion. Here we show that thermoelectric voltage can be enhanced by a factor of 3 using layer-cake growth of Ge quantum dots through thermal oxidation of SiGe layers stacked in SiO2/Si3N4 multilayer structure. The key to achieving this behavior has been to strain the Ge/Si interface by Ge dots migrating to Si substrate. Calculations taking into account the carrier trapping in the dot with a quantum transmission into the neighboring dot show satisfactory agreement with experiments above ≈200 K. The results may be of interest for improving the functionality of thermoelectric devices based on Ge/Si.  相似文献   

19.
The effects imposed to the electron energy levels of Si/SiO2 quantum dots by the presence of smooth graded interfaces and interfacial carriers trap is studied. For small diameter quantum dots, while the existence of graded interfaces strongly blue shifts the carrier energy states (up to a few hundred meV), the effect of the interfacial carriers trap is to red shift the energies, but to a lesser extend (under 50 meV). In addition, slight changes in the distance of the carriers trap in relation to the center of the dot does not alter significantly the energy spectrum.  相似文献   

20.
We have calculated the strain distribution and electronic structures in stacked InAs/GaAs quantum dots (QDs) with the dot spacing 6–. We used the elastic continuum theory for the strain distribution, and the 8-band k·p theory for the electronic structures. For the triply stacked QDs, the light-hole (LH) component of the hole ground state increases with decreasing the dot spacing. The LH component in the columnar QD (dot spacing ) reaches 21.1% which is 4.8 times larger than that in the single QD due to the reduction of the biaxial strain. Further increase of the LH component (up to 28.6%) is obtained in the fivefold-stacked columnar QD. This result suggests a possibility of increase in the TM-mode transition in the columnar QDs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号