首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The profile of the energy deposition footprint is controlled during the C60+ erosion of Si surfaces by varying the incident energy and/or incident angle geometry. Sputter yield, surface topography, and chemical composition of the eroded surfaces were characterized using atomic force microscopy (AFM) and secondary ion mass spectrometry (SIMS). The experiments show that the 10 keV, 40° incident C60+ erosion of Si results in the formation of a C containing, mound-like structure on the solid surface. We find that the occurrence of this C feature can be avoided by increasing the incident energy of the C60+ projectile or by increasing the incident angle of the C60+ projectile. While both strategies allow for the Si samples to be eroded, the occurrence of topographical roughening limits the usefulness of C60+ in ultra-high resolution semiconductor depth profiling. Moreover, we find that the relative effect of changing the incident angle geometry of the C60+ projectile on the profile of the energy deposition footprint, and thus the sputter yield, changes according to the kinetic energy of the projectile and the material of the bombarded surface, a behavior that is quite different than what is observed for an atomic counterpart.  相似文献   

2.
Low-energy ion-beam sputtering, i.e. the removal of atoms from a surface due to the impact of energetic ions or atoms, is an inherent part of numerous surface processing techniques. Besides the actual removal of material, this surface erosion process often results in a pronounced alteration of the surface topography. Under certain conditions, sputtering results in the formation of well-ordered patterns. This self-organized pattern formation is related to a surface instability between curvature-dependent sputtering that roughens the surface and smoothing by different surface relaxation mechanisms. If the evolution of surface topography is dominated by relaxation mechanisms, surface smoothing can occur. In this presentation the current status of self-organized pattern formation and surface smoothing by low-energy ion-beam erosion of Si and Ge is summarized. In detail it will be shown that a multitude of patterns as well as ultra-smooth surfaces can develop, particularly on Si surfaces. Additionally, the most important experimental parameters that control these processes are discussed. Finally, examples are given for the application of low-energy ion beams as a novel approach for passive optical device engineering for many advanced optical applications. PACS 81.16.Dn; 81.16.Rf; 81.65.Cf; 81.65.Ps; 68.35.Ct  相似文献   

3.
The feasibility of using molecular dynamics (MD) for simulation of a nanoscale sputter depth profile experiment is examined for the idealised case of depth profiles of individual atomic layers in a Cu(1 0 0) target. Issues relating to the extraction of depth profile information from MD simulations are discussed in detail. The simulations examine the sputter erosion of static and azimuthally-rotated Cu(1 0 0) targets produced by 3 keV Ar projectiles incident at 25° from the surface. The simulated projectile fluence extends to 5 × 1015 cm−2, and the mean value of the sputter depth, z, amounts to 8 Cu(1 0 0) monolayers (ML) or 15 Å. The simulations directly supply progressive layer erosion profiles (curves that depict the extent of sputter erosion of each atomic layer vs. total sputter depth). A fitting method is then used to extract smooth depth profiles for each atomic layer from these predicted erosion profiles. The depth profile characteristics (height, width, shift) for the first 10 layers of the target show a pronounced dependence on layer depth.  相似文献   

4.
Sputter deposition is a complex process; it is obvious that the energy and direction of the particles arriving at the substrate is in close relation with the transport process from the target to the substrate, it is desirable to model this transport of atoms through the background gas. The transport of sputtered Ag atoms during sputter deposition through the gas phase in the facing targets sputtering system studied by Monte Carlo simulation is presented. The model calculates the flux of the atoms arriving at the substrate, their energy, direction and number of collisions they underwent. The dependence of the deposition rates of Ag atoms on the gas pressure and the distance between the targets and substrate were investigated.  相似文献   

5.
We investigate evolving surface morphology during focused ion beam bombardment of C and determine its effects on sputter yield over a large range of ion dose (1017-1019 ions/cm2) and incidence angles (Θ = 0-80°). Carbon bombarded by 20 keV Ga+ either retains a smooth sputtered surface or develops one of two rough surface morphologies (sinusoidal ripples or steps/terraces) depending on the angle of ion incidence. For conditions that lead to smooth sputter-eroded surfaces there is no change in yield with ion dose after erosion of the solid commences. However, for all conditions that lead to surface roughening we observe coarsening of morphology with increased ion dose and a concomitant decrease in yield. A decrease in yield occurs as surface ripples increase wavelength and, for large Θ, as step/terrace morphologies evolve. The yield also decreases with dose as rippled surfaces transition to have steps and terraces at Θ = 75°. Similar trends of decreasing yield are found for H2O-assisted focused ion beam milling. The effects of changing surface morphology on yield are explained by the varying incidence angles exposed to the high-energy beam.  相似文献   

6.
The (1 0 0) SrTiO3 substrate has emerged as the oxide substrate of choice for the deposition of a wide variety of materials. The substrate's unavoidable miscut leads to a step-terrace morphology when heated to high temperatures. This morphological transition is accompanied by an atomic scale repositioning of the uppermost terrace atoms, the nature of which is strongly dependent on the substrate temperature and ambient atmosphere used. Here, we report the deposition of CdTe films on the as-received and reconstructed surfaces of (1 0 0) SrTiO3. The as-received substrate gives rise to a [1 1 1] CdTe film with four equally distributed in-plane grain orientations. The surface reconstruction, on the other hand, gives rise to an unprecedented reorientation of the film's grain structure. For this case, a [2 1 1] CdTe film emerges having twelve unevenly distributed in-plane orientations. We attribute the film's grain structure to an atomic scale surface reconstruction, with the anisotropic distribution of grain-types arising from a preferential formation due to the step edges.  相似文献   

7.
We investigate the ripple pattern formation on Si surfaces at room temperature during normal incidence ion beam erosion under simultaneous deposition of different metallic co-deposited surfactant atoms. The co-deposition of small amounts of metallic atoms, in particular Fe and Mo, is known to have a tremendous impact on the evolution of nanoscale surface patterns on Si. In previous work on ion erosion of Si during co-deposition of Fe atoms, we proposed that chemical interactions between Fe and Si atoms of the steady-state mixed Fe x Si surface layer formed during ion beam erosion is a dominant driving force for self-organized pattern formation. In particular, we provided experimental evidence for the formation of amorphous iron disilicide. To confirm and generalize such chemical effects on the pattern formation, in particular the tendency for phase separation, we have now irradiated Si surfaces with normal incidence 5 keV Xe ions under simultaneous gracing incidence co-deposition of Fe, Ni, Cu, Mo, W, Pt, and Au surfactant atoms. The selected metals in the two groups (Fe, Ni, Cu) and (W, Pt, Au) are very similar regarding their collision cascade behavior, but strongly differ regarding their tendency to silicide formation. We find pronounced ripple pattern formation only for those co deposited metals (Fe, Mo, Ni, W, and Pt), which are prone to the formation of mono and disilicides. In contrast, for Cu and Au co-deposition the surface remains very flat, even after irradiation at high ion fluence. Because of the very different behavior of Cu compared to Fe, Ni and Au compared to W, Pt, phase separation toward amorphous metal silicide phases is seen as the relevant process for the pattern formation on Si in the case of Fe, Mo, Ni, W, and Pt co-deposition.  相似文献   

8.
The erosion of target materials with energetic ions can lead to the formation of patterns on the surface. During low-energy (?2000 eV) noble gas (Ne+, Ar+, Kr+, Xe+) ion beam erosion of silicon surfaces dot patterns evolve on the surface. Dot structures form at oblique ion incidence of 75° with respect to surface normal, with simultaneous sample rotation, at room temperature. The lateral ordering of dots increases while the dot size remains constant with ion fluence, leading to very well ordered dot patterns for prolonged sputtering. Depending on ion beam parameters, dot nanostructures have a mean size from 25 nm up to 50 nm, and a mean height up to 15 nm. The formation of dot patterns depends on the ion/target mass ratio and on the ion energy. The temporal evolution and the lateral ordering of these nanostructures is studied using scanning force microscopy (AFM).  相似文献   

9.
The mechanisms of erosion of metal surfaces under the action of submicrosecond (10−9−10−6 s) ion beams in the power density range of P = 106−109 W/cm2 with a particle energy of 1–2000 keV are considered. It is shown that the collective processes associated with the radiation heating of the surface are of great importance. A model for the erosion is proposed. In accordance with this model, the flow of atoms of the target leaving the surface being irradiated consists of two independent components caused by collisional sputtering and evaporation, respectively. The influence of the irradiation parameters on the erosion coefficient and the ratio between the sputtering and evaporation factors is analyzed.  相似文献   

10.
2 has been used for smoothing of rough InAs, InP, and InSb surfaces, prepared by argon ion beam etching (IBE). The evolution of the surface roughness and morphology has been studied by atomic force microscopy (AFM) as a function of the N2 RIBE process parameters (ion beam energy, ion beam angle of incidence, and ion dose). A drastic improvement of the surface roughness has been observed for ion beam angles near normal incidence and larger than 70° with increasing ion doses. By using this technique, the initial root-mean-square (rms) roughness of, e.g., InSb of about 40 nm could be decreased to about 1 nm. Received: 20 March 1998/Accepted: 24 March 1998  相似文献   

11.
A novel quantification approach is applied to determine in situ the amount of surface oxygen within the sputtered particle escape depth during steady-state sputter depth profiling of silicon under simultaneous oxygenation with an oxygen flood gas or with an oxygen primary ion beam. Quantification is achieved by comparing the secondary ion intensities of 16O that is adsorbed or implanted at the Si surface with the measured peak intensities of a calibrated 18O ion implant used as a reference standard. Sputtered ion yields can thereby be related to surface oxygen levels. In the present work the dependences of the partial silicon sputter yield Y and of the positive and negative secondary ion useful yields UY(X±) (X = B, O, Al, Si, P) on the oxygen/silicon ratio, O/Si, in the sputtered flux are studied for 40Ar+ bombardment of Si with simultaneous O2 flooding. The silicon sputter yield is found to decrease with increasing flood pressure and O/Si ratio by up to a factor of 3. Both positive and negative secondary ion yields are enhanced by the presence of oxygen at the silicon surface. The useful ion yield of Si+ scales non-linearly with the atom fraction of surface oxygen; this behavior is shown to invalidate models that suggest that Si+ ion yield enhancement is dominated either by isolated oxygen atoms or by formation of SiO2 precipitates. In contrast a microscopic statistical model that assumes that local Si+ ion formation depends only on the number of oxygen atoms coordinated to the Si atom to be ejected fits the ion yield data quantitatively.  相似文献   

12.
P. Süle 《Surface science》2005,585(3):170-176
The evolution of the thin-film morphology is studied by molecular dynamics simulations and we find a strong tendency of adatom island growth on the (1 1 1) surface of a thin Al overlayer placed on a heavy substrate (Pt(1 1 1)) when the system is subjected to low-energy Xe+ irradiation. The large adatom yield of 102−103 is found for 5-10 keV rare gas ion impacts. We also find that the mass effect due to the small atomic mass ratio (large mass anisotropy) in the bilayer has a direct effect on the atomic layer growth on the surface. A mass anisotropy induced scattering of the light overlayer atoms from the heavy substrate contributes to the enhancement of adatom production. It has been found that the volume increase (density decrease) of the amorphous intermixed phase keeps the adatoms on the surface. The competition between cratering and atomic layer growth can also be seen: three events out of 10 leads to cratering (erosion) morphology at 6 keV ion energy. The substrate induced enhancement of atomic layer growth might be a promising tool for making arrays of nanodots as nanotemplates for nanofabrication.  相似文献   

13.
Using the STM technique we have determined the sputter yield on a pristine Cu(001) surface after mild (fluence less than 0.044 ions per surface atom) bombardment of the pristine surface with 800 eV Ar+ions at normal incidence. The experiments have been performed at substrate temperatures ranging from 200 to 350 K. Making use of the positional correlation of adatoms and surface vacancies, at 200 K and 325 K, we concluded that about 1/3 of the surface adatoms originate from interstitials arriving at the surface and they give a direct indication of the buried bulk vacancies. A careful analysis of the different areas for surface vacancies and adatom then allowed a quantitative evaluation of the sputter yield at 1.2 Cu atoms per 800 eV Ar+ ion.  相似文献   

14.
Using a field emission gun based scanning electron microscopy, we report the formation of nanodots on the InP surfaces after bombardment by 100 keV Ar+ ions under off-normal ion incidence (30° and 60° with respect to the surface normal) condition in the fluence range of 1 × 1016 to 1 × 1018 ions cm−2. Nanodots start forming after a threshold fluence of about 1 × 1017 ions cm−2. It is also seen that although the average dot diameter increases with fluence the average number of dots decreases with increasing fluence. Formation of such nanostructured features is attributed due to ion-beam sputtering. X-ray photoelectron spectroscopy analysis of the ion sputtered surface clearly shows In enrichment of the sputtered InP surface. The observation of growth of nanodots on the Ar+-ion sputtered InP surface under the present experimental condition matches well with the recent simulation results based on an atomistic model of sputter erosion.  相似文献   

15.
16.
Auger Electron Spectroscopy has been used to investigate the preferred sputtering behavior on homogeneous Cu/Ni alloy surfaces. Measurements were made on a range of alloy compositions with Ar+ sputter ions of 0.5 to 2 keV energy. A kinetic model has been formulated to describe the time variation of the surface composition during sputtering. Based on this model, we were able to determine the individual sputter yields for Cu and Ni atoms in the alloy and the depth of the surface layer where the composition is altered by sputtering. The sputter yields were found to be relatively independent of the alloy composition but increased almost linearly with energy. The depth of the altered layer was comparable to the Auger sampling depth with its value increasing from 10 Å to more than 20 Å when ion energy increased from 0.5 to 2 keV.  相似文献   

17.
Surface modification and smoothing of patterned surfaces with gas cluster ion beams were studied. In this work, line and space patterns having various intervals and depths were created on amorphous carbon films by focused Ga+ ion beams, and subsequently, Ar GCIB irradiations on the pattern were performed. When the acceleration voltage of Ar cluster ions was 20 kV, the grooves, whose interval was below 200 nm, were planarized. However, it required much higher ion dose for wider interval of patterns. It is estimated that the distance of lateral motions induced by one cluster ion impact defines the spatial wavelength dependence of smoothing.  相似文献   

18.
A composition spread metal thin film fabrication technique based on ion beam sputter deposition method was developed. The technique enables us to fabricate any desired part or a complete binary/ternary composition spread metal thin films onto a single substrate by sequentially sputtering different target materials. Composition spread metal thin films can be deposited directly on a dielectric film in patterned electrode shape for C-V and I-V measurements. The system could be especially useful in the search for new multi-component metal gate materials.  相似文献   

19.
Influence of substrate on electronic sputtering of fluoride (LiF, CaF2 and BaF2) thin films, 10 and 100 nm thin, under dense electronic excitation of 120 MeV Ag25+ ions irradiation is investigated. The sputtering yield of the films deposited on insulating (glass) and semiconducting (Si) substrates are determined by elastic recoil detection analysis technique. Results revealed that sputtering yield is higher, up to 7.4 × 106 atoms/ion for LiF film on glass substrate, than that is reported for bulk materials/crystals (∼104 atoms/ion), while a lower value of the yield (2.3 × 106 atoms/ion) is observed for film deposited on Si substrate. The increase in the yield for thin films as compared to bulk material is a combined effect of the insulator substrate used for deposition and reduced film dimension. The results are explained in the framework of thermal spike model along with substrate and size effects in thin films. It is also observed that the material with higher band gap showed higher sputtering yield.  相似文献   

20.
We have observed the motion of Sm+ ions as well as Sm atoms produced by femtosecond laser ablation of a solidified samarium solution sample on substrates by using a planar laser-induced fluorescence method. Kinetic energies of both Sm+ ions and Sm atoms increase as the electrical conductivity of the substrate decreases, which suggests the effect of surface charging. The kinetic energy of Sm+ ions is larger than that of Sm atoms for a variety of substrates due to the further electrical acceleration by the surface charge. The knowledge of ion motion will be the key information for the optimization of femtosecond laser simultaneous atomization and ionization of organic and inorganic samples on substrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号