首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
刘广山 《化学进展》2011,23(7):1558-1565
海洋放射化学研究海洋中放射性核素的含量分布和存在形式,并通过含量分布的时空变化研究海水中放射性核素的来源归宿和迁移变化规律,以及海洋各储库可能的储量。本文简述了国内外海洋放射化学的发展历史和一些成果。应用海洋放射化学的海洋学研究的主要内容是海洋环流,海水混合,海洋颗粒物动力学,和海洋放射年代学。海洋放射化学将来的重大研究方向是,海洋生物地球化学循环通量与时间尺度研究,过去的海洋环境变化研究,和核电站邻近海域放射性核素的累积与生态效应研究。没有专门的大项目的支持,对海洋本质问题深入研究少,海洋物理化学研究不够深入,需要进行高水平设备建设与应用研究,是中国海洋放射化学研究存在的主要问题。  相似文献   

2.
The radiochemistry of aluminum was reviewed for the Sub-Committee on Radiochemistry, National Research Council of the United States National Academy of Sciences. The focus of the review is on nuclear and instrumental methods for analysis of Al in biological and environmental samples. Aluminum is a neurotoxin. Continuing controversy about environmental Al and Alzheimer's Disease has motivated development of ultra-sensitive and precise analysis of samples, since the first review on the radiochemistry of aluminum in 1961. Examples and selected procedures of particular interest to radiochemists are given. Selected topics include tracer applications of28Al and29Al; and AMS for determination of26Al relative to questions asked by cosmochemists and geochemists. Extensive tables provide physical data, stability constants of Al complexes, comparison of analytical methods of analysis of biological samples, and a compilation of results obtained by various techniques for Standard Reference Materials. The literature search was through August, 1995.  相似文献   

3.
Since the publication ofRadiochemistry of Germanium (NAS-NS-3043) in 1961, there have been significant developments on the subject. During the period from 1970 to 1980, the diagnostic utilization of the68Ge68Ga generator system in nuclear medicine stimulated research in the field. In addition, over the past 30 years there have been many advances in the analytical chemistry of germanium (Ge), owing to the rapid increase in application of Ge in the electronics industry and, most recently, as an important component in infrared spectrometers.This fatest review has been completely rewritten. A literature search has been completed through December of 1990. Literature for selected topics has been surveyed through September 1993. The first section contains general information about germanium and its radioisotopes, and relevant nuclear data in tabulated form. In the second section, a general review of the inorganic and analytical chemistry of Ge is presented. Following these two introductory sections, subsequent sections deal with the production and preparation of germanium radioisotopes, separation and determination of Ge, of particular interest to the radiochemist, and selected procedures for its determination in or separation from various media. The section on separation chemistry has been greatly expanded.The review includes sections on hot-atom chemistry and the chemical behavior of carrier-free68Ge. A section entitled Applied Radiochemistry of Germanium deals specifically with68Ge68Ga generator systems, the role of71Ge in the detection of solar netrinos, and the preparation of68Ge positron sources for studying dislocations in metallic lattices and calibration of Positron Emission Tomography (PET) cameras.Two other noteworthy points follow. Throughout the text, the oxidation state of a metal ion having only one stable state, such as germanium, is not explicitly indicated. Therefore, Ge typically represents Ge4+. Other ions such as arsenic and tin, however, are indicated with their appropriate oxidation states. The term carrier-free applies to radioactive preparations to which no isotopic carrier (stable isotopes) is intentionally added.  相似文献   

4.
5.
6.
7.
8.
The paper deals with radiochemistry of tracer amounts of radionucli des with N=1 to 100 or several hundreds of species/cm3.  相似文献   

9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
在我国核能快速发展的新形势下,新型核能资源的开发、乏燃料后处理、放射性废物处理与处置等核燃料循环化学研究日益活跃。随着科学技术的不断发展,离子加速器、反应堆、各种类型的探测器和分析设备、以及计算机技术等的发展,核化学与放射化学研究的范围和成果在不断扩展和增加,如核安全、环境放射化学、放射分析化学、放射性药物与标记化合物等,研究成果对于国防建设、核能发展、核技术应用等方面具有重要支撑作用。本文综述了近年来国内在上述领域所取得的研究进展。共引用参考文献161篇。  相似文献   

20.
Conclusion As this brief survey has indicated, the Radiochemistry group at KSLA is deeply involved in many areas of process development. Sometimes directly, as in source or tracer application, at other times indirectly such as through activation analysis. The activities reflect the strong emphasis on process development in KSLA as a whole.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号