首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This work presents an adaptive sliding mode control scheme to elucidate the robust chaos suppression control of non-autonomous chaotic systems. The proposed control scheme utilizes extended systems to ensure that continuous control input is obtained in order to avoid chattering phenomenon as frequently in conventional sliding mode control systems. A switching surface is adopted to ensure the relative ease in stabilizing the extended error dynamics in the sliding mode. An adaptive sliding mode controller (ASMC) is then derived to guarantee the occurrence of the sliding motion, even when the chaotic horizontal platform system (HPS) is undergoing parametric uncertainties. Based on Lyapunov stability theorem, control laws are derived. In addition to guaranteeing that uncertain horizontal platform chaotic systems can be stabilized to a steady state, the proposed control scheme ensures asymptotically tracking of any desired trajectory. Furthermore, the numerical simulations verify the accuracy of the proposed control scheme, which is applicable to another chaotic system based on the same design scheme.  相似文献   

2.
The unified chaotic system incorporates the behaviors of the Lorenz, the Chen and the Lü chaotic systems. This paper deals with the synchronization of two identical unified chaotic systems where the slave system is assumed to have a single input. A sliding mode controller is proposed to synchronize the two systems. The asymptotic convergence to zero of the errors between the states of the master and the slave systems is shown. Simulations results are presented to illustrate the proposed controller; they indicate that the designed controller is able to synchronize the unified chaotic systems. Also, simulation results show that the proposed control scheme is robust to random bounded disturbances acting on the master system. Moreover, the proposed scheme is applied to the secure communications field, where simulation results indicate that the proposed scheme is effective.  相似文献   

3.
In this paper, a robust intelligent sliding model control (RISMC) scheme using an adaptive recurrent cerebellar model articulation controller (RCMAC) is developed for a class of uncertain nonlinear chaotic systems. This RISMC system offers a design approach to drive the state trajectory to track a desired trajectory, and it is comprised of an adaptive RCMAC and a robust controller. The adaptive RCMAC is used to mimic an ideal sliding mode control (SMC) due to unknown system dynamics, and a robust controller is designed to recover the residual approximation error for guaranteeing the stable characteristic. Moreover, the Taylor linearization technique is employed to derive the linearized model of the RCMAC. The all adaptation laws of the RISMC system are derived based on the Lyapunov stability analysis and projection algorithm, so that the stability of the system can be guaranteed. Finally, the proposed RISMC system is applied to control a Van der Pol oscillator, a Genesio chaotic system and a Chua’s chaotic circuit. The effectiveness of the proposed control scheme is verified by some simulation results with unknown system dynamics and existence of external disturbance. In addition, the advantages of the proposed RISMC are indicated in comparison with a SMC system.  相似文献   

4.
This paper is concerned with the stabilization problem for a class of chaotic systems with mismatched perturbations and input nonlinearities. A novel sliding surface is specially designed so that when the system enters the sliding mode, the mismatched perturbations can be effectively overcome and achieve asymptotic stability. Then, an adaptive sliding mode controller (ASMC) is proposed to drive the controlled state trajectories into the designated sliding surface in finite time even subjected to input nonlinearities. Finally, the corresponding numerical simulations are demonstrated to verify the effectiveness of proposed method.  相似文献   

5.
研究了分数阶双指数混沌系统的自适应滑模同步问题.通过设计滑模函数和控制器,构造了平方Lyapunov函数进行稳定性分析.利用Barbalat引理证明了同步误差渐近趋于零,获得了系统取得自适应滑模同步的充分条件.数值仿真结果表明:选取适当的控制器及与滑模函数,分数阶双指数混沌系统取得自适应滑模同步.  相似文献   

6.
An active sliding mode controller is designed to synchronize three pairs of different chaotic systems (Lorenz–Chen, Chen–Lü, and Lü–Lorenz) in drive–response structure. It is assumed that the system parameters are known. The closed loop error dynamics depend on the linear part of the response systems and parameters of the controller. Therefore, the synchronization rate can be adjusted through these parameters. Analysis of the stability for the proposed method is derived based on the Lyapunov stability theorem. Finally, numerical results are presented to show the effectiveness of the proposed control technique.  相似文献   

7.
In this paper, we derive some less stringent conditions for the exponential and asymptotic stability of impulsive control systems with impulses at fixed times. These conditions are then used to design an impulsive control law for the Quantum Cellular Neural Network chaotic system, which drives the chaotic state to zero equilibrium and synchronizes two chaotic systems. An active sliding mode control method is synchronizing two chaotic systems and controlling chaotic state to periodic motion state. And a sufficient condition is drawn for the robust stability of the error dynamics, and is applied to guiding the design of the controllers. Finally, numerical results are used to show the robustness and effectiveness of the proposed control strategy.  相似文献   

8.
A robust adaptive sliding control scheme is developed in this study to achieve synchronization for two identical chaotic systems in the presence of uncertain system parameters, external disturbances and nonlinear control inputs. An adaptation algorithm is given based on the Lyapunov stability theory. Using this adaptation technique to estimate the upper-bounds of parameter variation and external disturbance uncertainties, an adaptive sliding mode controller is then constructed without requiring the bounds of parameter and disturbance uncertainties to be known in advance. It is proven that the proposed adaptive sliding mode controller can maintain the existence of sliding mode in finite time in uncertain chaotic systems. Finally, numerical simulations are presented to show the effectiveness of the proposed control scheme.  相似文献   

9.
In this paper, an adaptive sliding mode controller for a novel class of fractional-order chaotic systems with uncertainty and external disturbance is proposed to realize chaos control. The bounds of the uncertainty and external disturbance are assumed to be unknown. Appropriate adaptive laws are designed to tackle the uncertainty and external disturbance. In the adaptive sliding mode control (ASMC) strategy, fractional-order derivative is introduced to obtain a novel sliding surface. The adaptive sliding mode controller is shown to guarantee asymptotical stability of the considered fractional-order chaotic systems in the presence of uncertainty and external disturbance. Some numerical simulations demonstrate the effectiveness of the proposed ASMC scheme.  相似文献   

10.
An unscented filtering algorithm is derived for a class of nonlinear discrete-time stochastic systems using noisy observations which can be randomly delayed by one or two sample times. The update and the possible delays (of one and two sampling times) of any observation are modelled by using three Bernoulli random variables such that only one of them takes the value one. The algorithm performs in two-steps, prediction and update, and it uses a scaled unscented transformation to approximate the conditional mean and covariance of the state and observation at each time. The performance of the proposed filter is shown in a simulation example which uses a growth model with randomly delayed observations; in this example, the proposed filter is compared with the extended one obtained by linearizing the state and the observation equations and, also, with the unscented Kalman filter. A clear superiority of the proposed filter over the others is inferred.  相似文献   

11.
This paper presents a systematic design procedure to synchronize two identical generalized Lorenz chaotic systems based on a sliding mode control. In contrast to the previous works, this approach only needs a single controller to realize synchronization, which has considerable significance in reducing the cost and complexity for controller implementation. A switching surface only including partial states is adopted to ensure the stability of the error dynamics in the sliding mode. Then an adaptive sliding mode controller (ASMC) is derived to guarantee the occurrence of the sliding motion even when the parameters of the drive and response generalized Lorenz systems are unknown. Last, an example is included to illustrate the results developed in this paper.  相似文献   

12.
This paper introduces a novel type of synchronization, where two chaotic systems synchronize up to an arbitrary scaling matrix. In particular, each drive system state synchronizes with a linear combination of response system states by using a single synchronizing signal. The proposed observer-based method exploits a theorem that assures asymptotic synchronization for a wide class of continuous-time chaotic (hyperchaotic) systems. Two examples, involving Rössler’s system and a hyperchaotic oscillator, show that the proposed technique is a general framework to achieve any type of synchronization defined to date.  相似文献   

13.
In this paper via a novel method of discretized continuous-time Kalman filter, the problem of synchronization and cryptography in fractional-order systems has been investigated in presence of noisy environment for process and output signals. The fractional-order Kalman filter equation, applicable for linear systems, and its extension called the extended Kalman filter, which can be used for nonlinear systems, are derived. The result is utilized for chaos synchronization with the aim of cryptography while the transmitter system is fractional-order, and both the transmitter and transmission channel are noisy. The fractional-order stochastic chaotic Chen system is then presented to apply the proposed method for chaotic signal cryptography. The results show the effectiveness of the proposed method.  相似文献   

14.
A sliding mode control technique is introduced for exponential synchronization of chaotic systems. These systems are described by a general form including matched and unmatched nonlinear functions. A new hitting-free switching surface of proportional-integral type is proposed. This type of switching surface is without the hitting process if the attraction of sliding manifold is ensured. This property makes it easy to exponentially synchronize the master-slave chaotic systems. Based on this switching surface, a robust sliding mode controller (SMC) is derived to guarantee the attraction of sliding manifold even when the system is subjected to input uncertainties. An example is included to illustrate the results developed in this paper.  相似文献   

15.
This paper presents a robust algorithm to control the chaotic atomic force microscope system (AFMs) by backstepping design procedure. The proposed feedback controller is composed by a sliding mode control (SMC) and a backstepping feedback, so its implementation is quite simple and can be made on the basis of the measured signal. The developed control scheme allows chaos suppression despite uncertainties in the model as well as system external disturbances. The concept of extended system is used such that a continuous sliding mode control effort is generated using backstepping scheme. It is guaranteed that under the proposed control law, uncertain AFMs can asymptotically track target orbits. The converging speed of error states can be arbitrary turned by assigning the corresponding dynamics of the sliding surfaces. Numerical simulations demonstrate its advantages by stabilizing the unstable periodic orbits of the AFMs and this method can also be easily extended to elimination chaotic motion in any types of chaotic AFMs.  相似文献   

16.
This paper investigates the chaos control problem for a general class of chaotic systems. A feedback controller is established to guarantee asymptotical stability of the chaotic systems based on the sliding mode control theory. A new reaching law is introduced to solve the chattering problem that is produced by traditional sliding mode control. A dynamic compensator is designed to improve the performance of the closed-loop system in sliding mode, and its parameter is obtained from a linear matrix inequality (LMI). Simulation results for the well known Chua’s circuit and Lorenz chaotic system are provided to illustrate the effectiveness of the proposed scheme.  相似文献   

17.
This paper investigates the chaos synchronization between Genesio chaotic systems with noise perturbation. It is proved theoretically that the synchronization between such noise-perturbed systems can be implemented by choosing a suitable sliding mode surface and designing a sliding mode controller. Numerical simulations show the effectiveness of the theoretical analysis. This proposed method is important because it can be applied to many other chaotic systems.  相似文献   

18.
Stabilizing unstable periodic orbits of a deterministic chaotic system which is perturbed by a stochastic process is studied in this paper. The stochastic chaos is modeled by exciting a deterministic chaotic system with a white noise obtained from derivative of a Wiener process which eventually generates an Ito differential equation. It is also assumed that the chaotic system being studied has some model uncertainties which are not random. The sliding mode controller with some modifications is used for stochastic chaos suppression. It is shown that the system states converge to the desired orbit in such a way that the error covariance converges to an arbitrarily small bound around zero. As some case studies, the stabilization of 1-cycle and 2-cycle orbits of chaotic Duffing and Φ6Φ6 Van der Pol systems is investigated by applying the proposed method to their corresponding stochastically perturbed systems. Simulation results show the effectiveness of the method and the accuracy of the statements proved in the paper.  相似文献   

19.
为解决模型参数不确定与外界干扰影响下,四旋翼无人机飞控作业中姿态与轨迹跟踪精度下降,反应迟缓的问题,利用拓展Kalman滤波应对非线性系统问题出色的适应能力和噪声抑制能力,对四旋翼状态信息进行初步估算来抑制高频信号干扰,从而降低了扩张状态观测器的估计负担.同时,与扩张状态观测器联合估计由系统不确定性参数与外界扰动联合组成的“总扰动”,使系统对于精确模型的依赖性降低,并利用扰动估计的微分值进行前馈补偿,以提高对突变扰动的跟踪精度,克服了突变干扰下的相位滞后现象.综合联合观测器、带前馈补偿的LESO及带误差补偿的PD控制律,形成了一种利用拓展Kalman滤波与前馈补偿后的扩张状态观测器联合观测扰动,能较大程度抑制高频噪声和突变扰动的改进型自抗扰控制器.仿真与实验结果表明,联合观测器能有效地减小观测误差幅值且能超前校正观测相位滞后,从而更好地得到更精确的状态信息,改进型自抗扰控制器能更好地满足四旋翼飞行器快速反应、高效稳定的控制要求,精准高效地完成复杂轨迹跟踪.  相似文献   

20.
In this paper, a secure communication scheme based on chaotic modulation is proposed using a reversible process and a robust controller with efficient cost and complexity to synchronize two different chaotic systems. In the controller design, a sliding mode control with an adaptive rule is used for non-linear inputs. The adaptive rule is applied to ensure the synchronization when uncertainties, non-modeled dynamics or external distortions are at work. The message signal is recovered at the receiver using a recursive process at the end. The effectiveness of the proposed algorithm is confirmed via the simulation results for the synchronization of the transmitted signal modulated by Chen chaotic system at the transmitter and Genesio chaotic system at the receiver, and those for the information recovery process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号