首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reactions of a dirhenium tetra(sulfido) complex [PPh(4)](2)[ReS(L)(mu-S)(2)ReS(L)] (L = S(2)C(2)(SiMe(3))(2)) with a series of group 8-11 metal complexes in MeCN at room temperature afforded either the cubane-type clusters [M(2)(ReL)(2)(mu(3)-S)(4)] (M = CpRu (2), PtMe(3), Cu(PPh(3)) (4); Cp = eta(5)-C(5)Me(5)) or the incomplete cubane-type clusters [M(ReL)(2)(mu(3)-S)(mu(2)-S)(3)] (M = (eta(6)-C(6)HMe(5))Ru (5), CpRh (6), CpIr (7)), depending on the nature of the metal complexes added. It has also been disclosed that the latter incomplete cubane-type clusters can serve as the good precursors to the trimetallic cubane-type clusters still poorly precedented. Thus, treatment of 5-7 with a range of metal complexes in THF at room temperature resulted in the formation of novel trimetallic cubane-type clusters, including the neutral clusters [[(eta(6)-C(6)HMe(5))Ru][W(CO)(3)](ReL)(2)(mu(3)-S)(4)], [(CpM)[W(CO)(3)](ReL)(2)(mu(3)-S)(4)] (M = Rh, Ir), [(Cp*Ir)[Mo(CO)(3)](ReL)(2)(mu(3)-S)(4)], [[(eta(6)-C(6)HMe(5))Ru][Pd(PPh(3))](ReL)(2)(mu(3)-S)(4)], and [(Cp*Ir)[Pd(PPh(3))](ReL)(2)(mu(3)-S)(4)] (13) along with the cationic clusters [(Cp*Ir)(CpRu)(ReL)(2)(mu(3)-S)(4)][PF(6)] (14) and [(Cp*Ir)[Rh(cod)](ReL)(2)(mu(3)-S)(4)][PF(6)] (cod = 1,5-cyclooctadiene). The X-ray analyses have been carried out for 2, 4, 7, 13, and the SbF(6) analogue of 14 (14') to confirm their bimetallic cubane-type, bimetallic incomplete cubane-type, or trimetallic cubane-type structures. Fluxional behavior of the incomplete cubane-type and trimetallic cubane-type clusters in solutions has been demonstrated by the variable-temperature (1)H NMR studies, which is ascribable to both the metal-metal bond migration in the cluster cores and the pseudorotation of the dithiolene ligand bonded to the square pyramidal Re centers, where the temperatures at which these processes proceed have been found to depend upon the nature of the metal centers included in the cluster cores.  相似文献   

2.
The chloro-bridged rhodium and iridium complexes [M2(BTSE)2Cl2] (M = Rh 1, Ir 2) bearing the chelating bis-sulfoxide tBuSOC2H4SOtBu (BTSE) were prepared by the reaction of [M2(COE)4Cl2] (M = Rh, Ir; COE = cyclooctene) with an excess of a racemic mixture of the ligand. The cationic compounds [M(BTSE)2][PF6] (M = Rh 3, Ir 4), bearing one S- and one O-bonded sulfoxide, were also obtained in good yields. The chloro-bridges in 2 can be cleaved with 2-methyl-6-pyridinemethanol and 2-aminomethyl pyridine, resulting in the iridium(I) complexes [Ir(BTSE)(Py)(Cl)] (Py = 2-methyl-6-pyridinemethanol 5, 2-aminomethyl-pyridine 6). In case of the bulky 2-hydroxy- isopropyl-pyridine, selective OH oxidative addition took place, forming the Ir(III)-hydride [Ir(BTSE)(2-isopropoxy-pyridine)(H)(Cl)] 7, with no competition from the six properly oriented C-H bonds. The cationic rhodium(I) and iridium(I) compounds [M(BTSE)(2-aminomethyl-pyridine)][X] (M = Rh 8, Ir 10), [Rh(BTSE)(2-hydroxy- isopropyl-pyridine)][X] 9(stabilized by intramolecular hydrogen bonding), [Ir(BTSE)(pyridine)2][PF6] 12, [Ir(BTSE)(alpha-picoline)2][PF6] 13, and [Rh(BTSE)(1,10-phenanthroline)][PF6] 14 were prepared either by chloride abstraction from the dimeric precursors or by replacement of the labile oxygen bonded sulfoxide in 3 or 4. Complex 14 exhibits a dimeric structure in the solid state by pi-pi stacking of the phenanthroline ligands.  相似文献   

3.
Treatment of [[Ti(eta5-C5Me5)(mu-NH)]3(mu3-N)] (1) with the diolefin complexes [[MCl(cod)]2] (M = Rh, Ir; cod = 1,5-cyclooctadiene) in toluene afforded the ionic complexes [M-(cod)(mu3-NH)3Ti3(eta5-C5Me5)3(mu3-N)]Cl [M = Rh (2), Ir (3)]. Reaction of complexes 2 and 3 with [Ag(BPh4)] in dichloromethane leads to anion metathesis and formation of the analogous ionic derivatives [M(cod)(mu3-NH)3Ti3-(eta5-C5Me5)3(mu3-N)][BPh4] [M = Rh (4), Ir (5)]. An X-ray crystal structure determination for 5 reveals a cube-type core [IrTi3N4] for the cationic fragment, in which 1 coordinates in a tripodal fashion to the iridium atom. Reaction of the diolefin complexes [[MCl(cod))2] (M = Rh, Ir) and [[RhCl(C2H4)2]2] with the lithium derivative [[Li(mu3-NH)2(mu3-N)-Ti3(eta5-C5Me5)3(mu3-N)]2] x C7H8 (6 C7H8) in toluene gave the neutral cube-type complexes [M(cod)(mu-NH)2(mu3-N)Ti3-(eta5-C5Me5)3(mu3-N)] [M = Rh (7), Ir (8)] and [Rh(C2H4)2(mu3-NH)2(mu3-N)Ti3(eta5-C5Me5)3(mu3-N)] (9), respectively. Density functional theory calculations have been carried out on the ionic and neutral azaheterometallocubane complexes to understand their electronic structures.  相似文献   

4.
Novel neutral and cationic Rh(I) and Ir(I) complexes that contain only DMSO molecules as dative ligands with S-, O-, and bridging S,O-binding modes were isolated and characterized. The neutral derivatives [RhCl(DMSO)(3)] (1) and [IrCl(DMSO)(3)] (2) were synthesized from the dimeric precursors [M(2)Cl(2)(coe)(4)] (M=Rh, Ir; COE=cyclooctene). The dimeric Ir(I) compound [Ir(2)Cl(2)(DMSO)(4)] (3) was obtained from 2. The first example of a square-planar complex with a bidentate S,O-bridging DMSO ligand, [(coe)(DMSO)Rh(micro-Cl)(micro-DMSO)RhCl(DMSO)] (4), was obtained by treating [Rh(2)Cl(2)(coe)(4)] with three equivalents of DMSO. The mixed DMSO-olefin complex [IrCl(cod)(DMSO)] (5, COD=cyclooctadiene) was generated from [Ir(2)Cl(2)(cod)(2)]. Substitution reactions of these neutral systems afforded the complexes [RhCl(py)(DMSO)(2)] (6), [IrCl(py)(DMSO)(2)] (7), [IrCl(iPr(3)P)(DMSO)(2)] (8), [RhCl(dmbpy)(DMSO)] (9, dmbpy=4,4'-dimethyl-2,2'-bipyridine), and [IrCl(dmbpy)(DMSO)] (10). The cationic O-bound complex [Rh(cod)(DMSO)(2)]BF(4) (11) was synthesized from [Rh(cod)(2)]BF(4). Treatment of the cationic complexes [M(coe)(2)(O=CMe(2))(2)]PF(6) (M=Rh, Ir) with DMSO gave the mixed S- and O-bound DMSO complexes [M(DMSO)(2)(DMSO)(2)]PF(6) (Rh=12; Ir=in situ characterization). Substitution of the O-bound DMSO ligands with dmbpy or pyridine resulted in the isolation of [Rh(dmbpy)(DMSO)(2)]PF(6) (13) and [Ir(py)(2)(DMSO)(2)]PF(6) (14). Oxidative addition of hydrogen to [IrCl(DMSO)(3)] (2) gave the kinetic product fac-[Ir(H)(2)Cl(DMSO)(3)] (15) which was then easily converted to the more thermodynamically stable product mer-[Ir(H)(2)Cl(DMSO)(3)] (16). Oxidative addition of water to both neutral and cationic Ir(I) DMSO complexes gave the corresponding hydrido-hydroxo addition products syn-[(DMSO)(2)HIr(micro-OH)(2)(micro-Cl)IrH(DMSO)(2)][IrCl(2)(DMSO)(2)] (17) and anti-[(DMSO)(2)(DMSO)HIr(micro-OH)(2)IrH(DMSO)(2)(DMSO)][PF(6)](2) (18). The cationic [Ir(DMSO)(2)(DMSO)(2)]PF(6) complex (formed in situ from [Ir(coe)(2)(O=CMe(2))(2)]PF(6)) also reacts with methanol to give the hydrido-alkoxo complex syn-[(DMSO)(2)HIr(micro-OCH(3))(3)IrH(DMSO)(2)]PF(6) (19). Complexes 1, 2, 4, 5, 11, 12, 14, 17, 18, and 19 were characterized by crystallography.  相似文献   

5.
Reactions of the methoxo complexes [{M(mu-OMe)(cod)}(2)] (cod=1,5-cyclooctadiene, M=Rh, Ir) with 2,2-dimethylaziridine (Haz) give the mixed-bridged complexes [{M(2)(mu-az)(mu-OMe)(cod)(2)}] [(M=Rh, 1; M=Ir, 2). These compounds are isolated intermediates in the stereospecific synthesis of the amido-bridged complexes [{M(mu-az)(cod)}(2)] (M=Rh, 3; M=Ir, 4). The electrochemical behavior of 3 and 4 in CH(2)Cl(2) and CH(3)CN is greatly influenced by the solvent. On a preparative scale, the chemical oxidation of 3 and 4 with [FeCp(2)](+) gives the paramagnetic cationic species [{M(mu-az)(cod)}(2)](+) (M=Rh, [3](+); M=Ir, [4](+)). The Rh complex [3](+) is stable in dichloromethane, whereas the Ir complex [4](+) transforms slowly, but quantitatively, into a 1:1 mixture of the allyl compound [(eta(3),eta(2)-C(8)H(11))Ir(mu-az)(2)Ir(cod)] ([5](+)) and the hydride compound [(cod)(H)Ir(mu-az)(2)Ir(cod)] ([6](+)). Addition of small amounts of acetonitrile to dichloromethane solutions of [3](+) and [4](+) triggers a fast disproportionation reaction in both cases to produce equimolecular amounts of the starting materials 3 and 4 and metal--metal bonded M(II)--M(II) species. These new compounds are isolated by oxidation of 3 and 4 with [FeCp(2)](+) in acetonitrile as the mixed-ligand complexes [(MeCN)(3)M(mu-az)(2)M(NCMe)(cod)](PF(6))(2) (M=Rh, [8](2+); M=Ir, [9](2+)). The electronic structures of [3](+) and [4](+) have been elucidated through EPR measurements and DFT calculations showing that their unpaired electron is primarily delocalized over the two metal centers, with minor spin densities at the two bridging amido nitrogen groups. The HOMO of 3 and 4 and the SOMO of [3](+) and [4](+) are essentially M--M d-d sigma*-antibonding orbitals, explaining the formation of a net bonding interaction between the metals upon oxidation of 3 and 4. Mechanisms for the observed allylic H-atom abstraction reactions from the paramagnetic (radical) complexes are proposed.  相似文献   

6.
Representative members of a new family of covalently bonded charge-transfer molecular hybrids, of general formula [(eta5-C5H5)Fe(mu,eta6:eta1-p-RC6H4NN)Mo(eta2-S2CNEt2)3] +PF6- (R: H, 5+PF6-; Me, 6+PF6-; MeO, 7+PF6-) and [(eta5-C5Me5)Fe(mu,eta6:eta1-C6H5NN)Mo(eta2-S2CNEt2)3]+PF6-, 8+PF6-, have been synthesized by reaction of the corresponding mixed-sandwich organometallic hydrazines [(eta5-C5H5)Fe(eta6-p-RC6H4NHNH2)]+PF6- (R: H, 1+PF6-; Me, 2+PF6-; MeO, 3+PF6-) and [(eta5-C5Me5)Fe(eta6-C6H5NHNH2)]+PF6-, 4+PF6-, with cis-dioxomolybdenum(VI) bis(diethyldithiocarbamato) complex, [MoO2(S2CNEt2)2], in the presence of sodium diethyldithiocarbamato trihydrate, NaSC(=S)NEt2.3H2O, in refluxing methanol. These iron-molybdenum complexes consist of organometallic and inorganic fragments linked each other through a pi-conjugated aryldiazenido bridge coordinated in eta6 and eta1 modes, respectively. These complexes were fully characterized by FT-IR, UV-visible, and 1H NMR spectroscopies and, in the case of complex 7+PF6-, by single-crystal X-ray diffraction analysis. Likewise, the electrochemical and solvatochromic properties were studied by cyclic voltammetry and UV-visible spectroscopy, respectively. The electronic spectra of these hybrids show an absorption band in the 462-489 and 447-470 nm regions in CH2Cl2 and DMSO, respectively, indicating the existence of a charge-transfer transition from the inorganic donor to the organometallic acceptor fragments through the aryldiazenido spacer. A rationalization of the properties of 5+PF6--8+PF6- is provided through DFT calculations on a simplified model of 7+PF6-. Besides the heterodinuclear complexes 5+PF6--8+PF6-, the mononuclear molybdenum diazenido derivatives, [(eta1-p-RC6H4NN)Mo(eta2-S2CNEt2)3] (R: H, 9; Me, 10; MeO, 11), resulting from the decoordination of the [(eta5-C5H5)Fe]+ moiety of complexes 5+PF6--7+PF6-, were also isolated. For comparative studies, the crystalline and molecular structure of complex 10.Et2O was also determined by X-ray diffraction analysis and its electronic structure computed.  相似文献   

7.
The complexes [(eta5-RC5H4)Ru(CH3CN)3]PF6(R = H, CH3) react with DCVP (DCVP = Cy2PCH=CH2) at room temperature to produce the phosphaallyl complexes [(eta5-C5H5)Ru(eta1-DCVP)(eta3-DCVP)]PF6 and [(eta5-MeC5H4)Ru(eta1-DCVP)(eta3-DCVP)]PF6. Both compounds react with a variety of two-electron donor ligands displacing the coordinated vinyl moiety. In contrast, we failed to prepare the phosphaallyl complexes [(eta5-C5Me5)Ru(eta1-DCVP)(eta3-DCVP)]PF6, [(eta5-MeC5H4)Ru(CO)(eta3-DCVP)]PF6 and [(eta5-C5Me5)Ru(CO)(eta3-DPVP)]PF6(DPVP = Ph2PCH=CH2).The compounds [(eta5-MeC5H4)Ru(CO)(CH3CN)(DPVP)]PF6 and [(eta5-C5Me5)Ru(CO)(CH3CN)(DPVP)]PF6 react with DMPP (3,4-dimethyl-1-phenylphosphole) to undergo [4 + 2] Diels-Alder cycloaddition reactions at elevated temperature. Attempts at ruthenium catalyzed hydration of phenylacetylene produced neither acetophenone nor phenylacetaldehyde but rather dimers and trimers of phenylacetylene. The structures of the complexes described herein have been deduced from elemental analyses, infrared spectroscopy, 1H, 13C{1H}, 31P{1H} NMR spectroscopy and in several cases by X-ray crystallography.  相似文献   

8.
The title compounds are accessed by sequences starting with racemic and enantiomerically pure [(eta5-C5H5)Re(NO)(PPh3)(CH3)]. Reactions with chlorobenzene/HBF4, PPh2H, and tBuOK give the phosphido complex [(eta5-C5H5)Re(NO)(PPh3)(PPh2)] (3). Reactions with Ph3C+ BF4-, PPh2H, and tBuOK give the methylene homologue [(eta5-C5H5)Re(NO)(PPh3)(CH2PPh2)] (9). Treatment of 3 or 9 with nBuLi or tBuLi and then PPh3Cl gives the diphosphido systems [(eta5-C5H4PPh2)Re(NO)(PPh3)((CH2)nPPh2)] (n = 0/1, 5/11). Reactions of 5 and 11 with [Rh(NBD)Cl]2/AgPF6 (NBD = norbornadiene) give the rhenium/rhodium chelate complexes [(eta5-C5H4PPh2)Re(NO)(PPh3)((mu-CH2)nPPh2)Rh(NBD)]+ PF6- (n = 0/1, 6+/12+ PF6-; 30-32% overall from commercial Re2(CO)10). The crystal structures of 6+ PF6- and 12+ PF6- are compared to those of 3 and 9, and other rhodium complexes of chelating bis(diphenylphosphines). The chiral pockets defined by the PPh2 groups show unusual features. Four alkenes of the type (Z)-RCH=C(NHCOCH3)CO2R' are treated with H2 (1 atm) and (R)-6+ PF6- or (S)-12+ PF6- (0.5 mol%) in THF at room temperature. Protected amino acids are obtained in 70-98% yields and 93-82% ee [(R)-6- PF6-] or 72-60% ee [(S)-12+ PF6-]. Pressure and temperature effects are defined, and turnover numbers of > 1600 are realized.  相似文献   

9.
Reactions of the bis(hydrosulfido) complexes [Cp*Rh(SH)(2)(PMe(3))] (1a; Cp* = eta(5)-C(5)Me(5)) with [CpTiCl(3)] (Cp = eta(5)-C(5)H(5)) and [TiCl(4)(thf)(2)] in the presence of triethylamine led to the formation of the sulfido-bridged titanium-rhodium complexes [Cp*Rh(PMe(3))(micro(2)-S)(2)TiClCp] (2a) and [Cp*Rh(PMe(3))(micro2-S)(2)TiCl(2)] (3a), respectively. Complex 3a and its iridium analogue 3b were further converted into the bis(acetylacetonato) complexes [Cp*M(PMe(3))(micro(2)-S)(2)Ti(acac)(2)] (4a, M = Rh; 4b, M = Ir) upon treatment with acetylacetone. The hydrosulfido complexes 1a and [Cp*Ir(SH)(2)(PMe(3))] (1b) also reacted with [VCl(3)(thf)(3)] and [Mo(CO)(4)(nbd)] (nbd = 2,5-norbornadiene) to afford the cationic sulfido-bridged VM2 complexes [(Cp*M(PMe(3))(micro2-S)(2))2V](+) (5a(+), M = Rh; 5b(+), M = Ir) and the hydrosulfido-bridged MoM complexes [Cp*M(PMe(3))(micro2-SH)(2)Mo(CO)(4)] (6a, M = Rh; 6b, M = Ir), respectively.  相似文献   

10.
The reaction of [(cod)M(mu-OMe)]2 (M = Rh, Ir; cod = cycloocta-1,5-diene) with calix[4]arenes (LH4) in the molar ratio of 0.5-0.6:1 gave the rhodium and iridium pi-arene complexes [(cod)M(eta 6-LH3)], while that in the molar ratio of 1.1-1.5:1 (M = Rh) led to the selective formation of the dinuclear complexes [((cod)Rh)2(eta 6:eta 2-LH2)] in which one of the Rh(cod)+ fragments is coordinated by an eta 6-aryl group and the other by two phenolic oxygen atoms; the stepwise synthesis of the Rh-Ir heterobimetallic analogue of the latter complex was further achieved.  相似文献   

11.
Titanium complexes with chelating alkoxide ligands [TiCp*(O(2)Bz)(OBzOH)] (1) and [TiCp*(Me)((OCH(2))(2)Py)] (2) were synthesised by reaction of [TiCp*Me(3)] (Cp*=eta(5)-C(5)Me(5)) with 2-hydroxybenzyl alcohol ((HO)(2)Bz) and 2,6-pyridinedimethanol ((HOCH(2))(2)Py), respectively. Complex 1 reacts with [(M(mu-OH)(cod))(2)] (M=Rh, Ir) to yield the early-late heterobimetallic complexes [TiCp*(O(2)Bz)(2)M(cod)] [M=Rh (3), Ir (4)]. Carbon monoxide readily replaces the COD ligand in 3 to give the rhodium dicarbonyl derivative [TiCp*(O(2)Bz)(2)Rh(CO)(2)] (5). Compound 2 reacts with [(M(mu-OH)(cod))(2)] (M=Rh, Ir) with protonolysis of a Tibond;Me bond to give [TiCp*((OCH(2))(2)Py)(mu-O)M(cod)] [M=Rh (6), Ir (7)]. The molecular structures of complexes 3, 5 and 7 were established by single-crystal X-ray diffraction studies.  相似文献   

12.
The generation of heterobimetallic complexes with two or three bridging sulfido ligands from mononuclear tris(sulfido) complex of tungsten [Et(4)N][(Me(2)Tp)WS(3)] (1; Me(2)Tp = hydridotris(3,5-dimethylpyrazol-1-yl)borate) and organometallic precursors is reported. Treatment of 1 with stoichiometric amounts of metal complexes such as [M(PPh(3))(4)] (M = Pt, Pd), [(PtMe(3))(4)(micro(3)-I)(4)], [M(cod)(PPh(3))(2)][PF(6)] (M = Ir, Rh; cod = 1,5-cyclooctadiene), [Rh(cod)(dppe)][PF(6)] (dppe = Ph(2)PCH(2)CH(2)PPh(2)), [CpIr(MeCN)(3)][PF(6)](2) (Cp = eta(5)-C(5)Me(5)), [CpRu(MeCN)(3)][PF(6)], and [M(CO)(3)(MeCN)(3)] (M = Mo, W) in MeCN or MeCN-THF at room temperature afforded either the doubly bridged complexes [Et(4)N][(Me(2)Tp)W(=S)(micro-S)(2)M(PPh(3))] (M = Pt (3), Pd (4)), [(Me(2)Tp)W(=S)(micro-S)(2)M(cod)] (M = Ir, Rh (7)), [(Me(2)Tp)W(=S)(micro-S)(2)Rh(dppe)], [(Me(2)Tp)W(=S)(micro-S)(2)RuCp] (10), and [Et(4)N][(Me(2)Tp)W(=S)(micro-S)(2)W(CO)(3)] (12) or the triply bridged complexes including [(Me(2)Tp)W(micro-S)(3)PtMe(3)] (5), [(Me(2)Tp)W(micro-S)(3)IrCp][PF(6)] (9), and [Et(4)N][(Me(2)Tp)W(micro-S)(3)Mo(CO)(3)] (11), depending on the nature of the incorporated metal fragment. The X-ray analyses have been undertaken to clarify the detailed structures of 3-5, 7, and 9-12.  相似文献   

13.
Neutral and cationic mononuclear complexes containing both group 15 and polypyridyl ligands [Ru(kappa3-tptz)(PPh3)Cl2] [1; tptz=2,4,6-tris(2-pyridyl)-1,3,5-triazine], [Ru(kappa3-tptz)(kappa2-dppm)Cl]BF4 [2; dppm=bis(diphenylphosphino)methane], [Ru(kappa3-tptz)(PPh3)(pa)]Cl (3; pa=phenylalanine), [Ru(kappa3-tptz)(PPh3)(dtc)]Cl (4; dtc=diethyldithiocarbamate), [Ru(kappa3-tptz)(PPh3)(SCN)2] (5) and [Ru(kappa3-tptz)(PPh3)(N3)2] (6) have been synthesized. Complex 1 has been used as a metalloligand in the synthesis of homo- and heterodinuclear complexes [Cl2(PPh3)Ru(micro-tptz)Ru(eta6-C6H6)Cl]BF4 (7), [Cl2(PPh3)Ru(mu-tptz)Ru(eta6-C10H14)Cl]PF6 (8), and [Cl2(PPh3)Ru(micro-tptz)Rh(eta5-C5Me5)Cl]BF4 (9). Complexes 7-9 present examples of homo- and heterodinuclear complexes in which a typical organometallic moiety [(eta6-C6H6)RuCl]+, [(eta6-C10H14)RuCl]+, or [(eta5-C5Me5)RhCl]+ is bonded to a ruthenium(II) polypyridine moiety. The complexes have been fully characterized by elemental analyses, fast-atom-bombardment mass spectroscopy, NMR (1H and 31P), and electronic spectral studies. Molecular structures of 1-3, 8, and 9 have been determined by single-crystal X-ray diffraction analyses. Complex 1 functions as a good precursor in the synthesis of other ruthenium(II) complexes and as a metalloligand. All of the complexes under study exhibit inhibitory effects on the Topoisomerase II-DNA activity of filarial parasite Setaria cervi and beta-hematin/hemozoin formation in the presence of Plasmodium yoelii lysate.  相似文献   

14.
It is shown that the water-soluble dicarboxylic cationic acid [(eta5-C5H4COOH)2Co(III)]+ (1) is an extremely versatile building block for the construction of organometallic crystalline edifices. Removal of one proton from 1 leads to formation of the neutral zwitterion [(eta5-C5H4COOH)(eta5-C5H4COO)Co(III)] (2), while further deprotonation leads to formation of the dicarboxylate monoanion [(eta5-C5H4COO)2Co(III)]- (3). Compounds 1. 2 and 3 possess different hydrogen-bonding capacity and participate in a variety of hydrogen-bonding networks. The cationic form 1 has been characterised as its [PF6]- and Cl- salts 1-[PF6] and 1-Cl.H2O, as well as in its co-crystal with urea, 1-Cl.3(NH2)2CO, and with the zwitterionic form 2, [(eta5-CH4COOH)(eta5-C5H4COO)Co(III)][(eta5-C5H4COOH)2Co(III)]+[PF6]-, 2.1-[PF6]. The neutral zwitterion 2 behaves as a supramolecular crown ether: it encapsulates the alkali cations K+, Rb+ and Cs+ as well as the ammonium cation NH4+ in cages sustained by O-H...O and C-H...O hydrogen bonds to form co-crystalline salts of the type 2(2)-M[PF6] (M = K, Rb, Cs) and 2(2)-[NH4][PF6]. The deprotonated acid 3 has been characterised as its Cs+ salt, Cs+-3.3H2O.  相似文献   

15.
A series of carbenerhodium(I) complexes of the general composition [(eta5-C5H5)Rh(=CRR')(L)] (2a-2i) with R = R'= aryl and L = SbiPr3 or PR3 has been prepared from the square-planar precursors trans-[RhCl(=CRR')(L)2] and NaC5H5 in excellent yields. Reaction of the triisopropylsibane derivative 2a. which contains a rather labile Rh-Sb bond, with CO, PMe3, and CNR (R = Me, CH2Ph, tBu) leads to the displacement of the SbiPr3 ligand and affords the substitution products [(eta5-C5H5)Rh(=CPh2)(L)] (3-7). In contrast, treatment of the triisopropylphosphane compound 2c with CO and CNtBu leads to the cleavage of the Rh=CPh2 bond and gives besides [(eta5-C5H5)Rh(PiPr3)(L)] (10, 12) by metal-assisted C-C coupling diphenylketene Ph2C=C=O (11) or the corresponding imine Ph2C=C=NtBu (13). While the reaction of 2a, c with C2H4 yields [(eta5-C5H5)Rh(C2H4)(L)] (14, 15) and the trisubstituted olefin Ph2C=CHCH3 (16), treatment of 2a, c with RN3 leads to the cleavage of both the Rh-EiPr3 and Rh=CPh2 bonds and gives the chelate complexes [(eta5-C5H5)Rh(kappa2-RNNNNR)] (19, 20). The substitution products 3 (L=CO) and 4 (L= PMe3) react with an equimolar amount of sulfur or selenium by addition of the chalcogen to the Rh=CPh2 bond to generate the complexes [(eta5-C5H5)Rh(kappa2-ECPh2)(L)] (21-24) with thio- or selenobenzophenone as ligand. Similarly, treatment of 3 with CuCl affords the unusual 1:2 adduct [(eta5-C5H5)(CO)Rh(mu-CPh2)(CuCl)2] (25), which reacts with NaC5H5 to form [(eta5-C5H5)(CO)Rh(muCPh2)Cu(eta5-C5H5)] (26). The molecular structures of 3 and 22 have been determined by X-ray crystallography.  相似文献   

16.
Cyclodiphosphazanes having hemilabile ponytails such as cis-[(t)()BuNP(OC(6)H(4)OMe-o)](2) (2), cis-[(t)()BuNP(OCH(2)CH(2)OMe)](2) (3), cis-[(t)BuNP(OCH(2)CH(2)SMe)](2) (4), and cis-[(t)BuNP(OCH(2)CH(2)NMe(2))](2) (5) were synthesized by reacting cis-[(t)()BuNPCl](2) (1) with corresponding nucleophiles. The reaction of 2 with [M(COD)Cl(2)] afforded cis-[MCl(2)(2)(2)] derivatives (M = Pd (6), Pt (7)), whereas, with [Pd(NCPh)(2)Cl(2)], trans-[MCl(2)(2)(2)] (8) was obtained. The reaction of 2 with [Pd(PEt(3))Cl(2)](2), [{Ru(eta(6)-p-cymene)Cl(2)](2), and [M(COD)Cl](2) (M = Rh, Ir) afforded mononuclear complexes of Pd(II) (9), Ru(II) (11), Rh(I) (12), and Ir(I) (13) irrespective of the stoichiometry of the reactants and the reaction condition. In the above complexes the cyclodiphosphazane acts as a monodentate ligand. The reaction of 2 with [PdCl(eta(3)-C(3)H(5))](2) afforded binuclear complex [(PdCl(eta(3)-C(3)H(5)))(2){((t)BuNP(OC(6)H(4)OMe-o))(2)-kappaP}] (10). The reaction of ligand 3 with [Rh(CO)(2)Cl](2) in 1:1 ratio in CH(3)CN under reflux condition afforded tetranuclear rhodium(I) metallamacrocycle (14), whereas the ligands 4 and 5 afforded bischelated binuclear complexes 15 and 16, respectively. The crystal structures of 8, 9, 12, 14, and 16 are reported.  相似文献   

17.
The reaction of the group 9 bis(hydrosulfido) complexes [Cp*M(SH)2(PMe3)] (M=Rh, Ir; Cp*=eta(5)-C 5Me5) with the group 6 nitrosyl complexes [Cp*M'Cl2(NO)] (M'=Mo, W) in the presence of NEt3 affords a series of bis(sulfido)-bridged early-late heterobimetallic (ELHB) complexes [Cp*M(PMe3)(mu-S)2M'(NO)Cp*] (2a, M=Rh, M'=Mo; 2b, M=Rh, M'=W; 3a, M=Ir, M'=Mo; 3b, M=Ir, M'=W). Similar reactions of the group 10 bis(hydrosulfido) complexes [M(SH)2(dppe)] (M=Pd, Pt; dppe=Ph 2P(CH2) 2PPh2), [Pt(SH)2(dppp)] (dppp=Ph2P(CH2) 3PPh2), and [M(SH)2(dpmb)] (dpmb=o-C6H4(CH2PPh2)2) give the group 10-group 6 ELHB complexes [(dppe)M(mu-S)2M'(NO)Cp*] (M=Pd, Pt; M'=Mo, W), [(dppp)Pt(mu-S)2M'(NO)Cp*] (6a, M'=Mo; 6b, M'=W), and [(dpmb)M(mu-S)2M'(NO)Cp*] (M=Pd, Pt; M'=Mo, W), respectively. Cyclic voltammetric measurements reveal that these ELHB complexes undergo reversible one-electron oxidation at the group 6 metal center, which is consistent with isolation of the single-electron oxidation products [Cp*M(PMe3)(mu-S)2M'(NO)Cp*][PF6] (M=Rh, Ir; M'=Mo, W). Upon treatment of 2b and 3b with ROTf (R=Me, Et; OTf=OSO 2CF 3), the O atom of the terminal nitrosyl ligand is readily alkylated to form the alkoxyimido complexes such as [Cp*Rh(PMe3)(mu-S)2W(NOMe)Cp*][OTf]. In contrast, methylation of the Rh-, Ir-, and Pt-Mo complexes 2a, 3a, and 6a results in S-methylation, giving the methanethiolato complexes [Cp*M(PMe3)(mu-SMe)(mu-S)Mo(NO)Cp*][BPh 4] (M=Rh, Ir) and [(dppp)Pt(mu-SMe)(mu-S)Mo(NO)Cp*][OTf], respectively. The Pt-W complex 6b undergoes either S- or O-methylation to form a mixture of [(dppp)Pt(mu-SMe)(mu-S)W(NO)Cp*][OTf] and [(dppp)Pt(mu-S) 2W(NOMe)Cp*][OTf]. These observations indicate that O-alkylation and one-electron oxidation of the dinuclear nitrosyl complexes are facilitated by a common effect, i.e., donation of electrons from the group 9 or 10 metal center, where the group 9 metals behave as the more effective electron donor.  相似文献   

18.
A novel class of cyclometalated macrocycles [(Cp*Ir)(2)(R-N=C-C(6)H(2)-C=N-R)(2)](2)(pyrazine)(2)·(OTf)(4) [R = Ph (4a), p-MeOC(6)H(4) (4b), p-MeC(6)H(4) (4c), p-ClC(6)H(4) (4d), Me (4e)]; [(Cp*Rh)(2)(R-N=C-C(6)H(2)-C=N-R)(2)](2)(pyrazine)(2)·(OTf)(4) [R = Ph (4a'), p-MeOC(6)H(4) (4b'), p-MeC(6)H(4) (4c')] and [(Cp*Ir)(2)(R-C=N-C(6)H(4)-N=C-R)(2)](2)(pyrazine)(2)·(OTf)(4) [R = Ph (5a), p-MeOC(6)H(4) (5b)] was stepwise constructed through the double-site C-H activation of aromatic bis-imine substrates. The structures of binuclear complexes and tetranuclear macrocycles were confirmed by single-crystal X-ray diffraction. Isomers were found both in binuclear species and macrocyclic complexes. Flexible substrates led to the existence of isomers for binuclear species, yet gave no isomers after macrocyclic constructions; rigid ones, in contrast, led to isomers only for macrocyclic species. The isomers of tetranuclear macrocycles were thermodynamically stable to reversible transformation on a scale of days. Robust bonding and a certain degree of rigidity were invoked to explain the existence of isomers. This is the first example, to our knowledge, in which coordinated macrocycles containing half-sandwich Cp*M (M = Ir, Rh) fragments have been constructed, without a dynamic reversible process.  相似文献   

19.
The effects of facial coordination of benzene to a trinuclear transition-metal cluster have been studied by structure correlation and DFT calculational methods. Data taken from the X-ray crystal structures of twelve complexes [(eta-C(5)H(4)R")Co(3)(micro(3)-eta(2):eta(2):eta(2)-C(6)H(4)RR')] 1 b-1 m were analyzed by using standard statistical methods. The prototypal facial arene ligand is considerably expanded with respect to free benzene and shows a small but highly significant Kekulè distortion (d(CC)=1.42, 1.45 A). DFT MO calculations were carried out on the model complexes [(eta-C(5)H(5))M(3)(micro-eta(2):eta(2):eta(2)-C(6)H(6))] 1 a (M=Co), 2 (M=Rh), and 3 (M=Ir). Ring currents in the facial benzene and apical cyclopentadienyl ligands have been assessed by nucleus independent chemical shift (NICS) calculations. Compared to the free ligand (with the optimized D(6h) structure as well as with D(3h) and a C(3v) geometries similar to that in the prototypal facial arene), facial benzene exhibits somewhat reduced but still substantial cyclic electron delocalization (CED). The calculated order of CED is benzene approximately [(CO)(3)Cr(eta-C(6)H(6))] 4 > 1 > 2 > 3.  相似文献   

20.
Cationic half-sandwich complexes containing the [(eta(5)-C(5)Me(5))M(Diphos*)] moiety (M=Rh, Ir; Diphos*=chiral diphosphine ligand) catalyze the cycloaddition of the nitrone 3,4-dihydroisoquinoline N-oxide (A) to methacrylonitrile (B) with excellent regio and endo selectivity and low-to-moderate enantioselectivity. The most active and selective catalyst, (S(Rh),R(C))-[(eta(5)-C(5)Me(5))Rh{(R)-Prophos)} (NC(Me)C==CH(2))](SbF(6))(2), has been isolated and fully characterized including the determination of the molecular structure by X-ray diffraction. The R-at-metal epimers of the complexes [(eta(5)-C(5)Me(5))M{(R)-Prophos)}(NC(Me)C==CH(2))](SbF(6))(2) (M=Rh, Ir) isomerize to the corresponding S-at-metal diastereomers. The stoichiometric cycloaddition of A with B is catalyzed by diastereopure (S(M),R(C))-[(eta(5)-C(5)Me(5))M{(R)-Prophos)}(NC(Me)C==CH(2))](SbF(6))(2) with perfect regio and endo selectivity and very good (up to 95 %) ee. The catalyst can be recycled up to nine times without significant loss of either activity or selectivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号