首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The interaction of the wetting front, described by the Boussinesq equation, with an impervious wall is considered using a superposition principle. A number of approximate solutions are compared with the numerical solution of the Boussinesq equation. The results show that the superposition approach provides an excellent method for obtaining an approximate solution.  相似文献   

2.
龚利策  陈硕 《力学季刊》2016,37(2):234-244
纳米固体表面的润湿性对于控制和设计纳米流体器件十分关键.本文使用分子动力学模拟研究了不同固液界面相互作用强度、温度、矩形孔道深宽比(H/L)、梯形孔道上下底之比(U/D)以及表面粗糙度等参数对液体浸入纳米狭缝通道动态过程的影响.结果表明,液体浸入狭缝的完全润湿时间受固液相互作用强度和狭缝形状以及尺寸的影响;纳米狭缝孔道粗糙结构对液体的浸入有抑制作用,表面粗糙度越大,抑制作用越明显.本研究可为纳米流体器件的设计提供一定的模拟信息.  相似文献   

3.
Amy Novick-Cohen 《Meccanica》2005,40(4-6):471-483
A degenerate Allen-Cahn/Cahn-Hilliard system which was developed to describe simultaneous ordering and phase separation, can also be viewed as a diffuse interface approximation for various problems in materials science in which surface diffusion and motion by mean curvature are coupled. In the original context a low temperature coarsening limit, yielding geometric motion in the limit, was designed to describe small particles of a disordered phase whose shape evolves by surface diffusion which are embedded along grain boundaries which partition the system into two ordered variants. While an early analysis focused on systems in the proximity of the complete wetting limit [9], a later analysis extended these results also to the partial wetting setting [11]. We outline here some features which determine whether a given degenerate Allen-Cahn/Cahn-Hilliard system corresponds to complete or partial wetting in the limit, giving some explicit examples of both possibilities.  相似文献   

4.
The water distribution in the capillary fringe (CF) reflects the interaction of a strongly wetting fluid in a heterogeneous porous medium. Field profiles of gravimetric water content of the CF for a 30m deep, sandy, phreatic aquifer in Israel are critically analyzed in the context of the possible wetting and drainage processes in these sediments. A highly plausible explanation of the profiles is based on the spatial configuration of the CF surface determined from a model of the movement of water within the porous medium. The structural types of CF that can arise from a number of competing pore-scale displacement mechanisms, in the presence of gravity, are characterized by the model. We differentiate between two generic types of CF structures: a tenuous invasion-percolation type and a compact type. Flow, in response to a horizontal pressure gradient, associated with each structure is analyzed. Our interpretation of the field data supports the compact structure with a spatial variation in the height of the CF surface, above the water table, on the order of 1m. In this compact structure horizontal flow is characterized by stagnant regions in the CF above a critical height h c and flow only for regions below h c . The field water content (at h c ) may be used to predict the onset of lateral water flow in the CF.  相似文献   

5.
The movement of wetting and nonwetting fluid flow in columns packed with glass beads is used to understand the more complicated flows in homogeneous porous media. The motion of two immiscible liquids (oil and water) is observed with different surfactants. Through dimensional analyses, fluid velocity is well correlated with interfacial tension and less dependent on particle size. In water–oil (W/O) experiments, finger pattern flows are observed if water is the displacing fluid that flows in an oil-filled porous media, whereas oil ganglia tend to form if oil is the displacing fluid in the water-wetted porous media. The results are well described by a simple model based on an earlier theory of flow in a tube.  相似文献   

6.
Predicting the Capillary Imbibition of Porous Rocks from Microstructure   总被引:4,自引:0,他引:4  
The kinetics of capillary imbibition into porous rocks is studied experimentally and theoretically. The Washburn law is modified by introducing various corrections relating to the microstructure of the rocks, such as tortuosity, pore shape (obtained experimentally), and applying the effective medium approximation (EMA) in order to calculate the effective radius that defines the hydraulic conductance and the topology of the capillary imbibition. The application of the EMA shows that capillary imbibition is mainly produced in 1-D, and the pore structure is constituted by different pore throats in series, linked by chamber pores. The capillary process has been discussed as a function of their petrography and pore structure. Our study of the Washburn equation and the addition of correction factors for the pore structure allows a very accurate prediction of the weight rate.  相似文献   

7.
The critical and optimum injection rates as well as the critical fracture capillary number for an efficient displacement process are determined based on the experimental and numerical modeling of the displacement of nonwetting phase (oil) by wetting phase (water) in fractured porous media. The efficiency of the process is defined in terms of the nonwetting phase displaced from the system per amount of wetting phase injected and per time. Also, the effects of injection rate on capillary imbibition transfer dominated two-phase flow in fractured porous media are clarified by visualizing the experiments. The results reveal that as the injection rate is increased, fracture pattern begins to become an effective parameter on the matrix saturation distribution. As the rate is lowered, however, the system begins to behave like a homogeneous system showing a frontal displacement regardless the fracture configuration.  相似文献   

8.
Condensation and flow experiments were conducted at subsurface conditions in a glass micromodel using reservoir fluids with and without the hydrogen sulfide component. It has been noted that the formation of the condensing phase as well as modes of condensate flow are similar for both fluids. Furthermore, an additional condensate transport mechanism, termed lamella flow, was observed with the sour fluid. It has been concluded that core flow experiments conducted with sweet reservoir fluid should reproduce the flow of sour fluid to a large extent.  相似文献   

9.
It is well known that the relationship between capillary pressure and saturation, in two-phase flow problems demonstrates memory effects and, in particular, hysteresis. Explicit representation of full hysteresis with a myriad of scanning curves in models of multiphase flow has been a difficult problem. A second complication relates to the fact that P cS relationships, determined under static conditions, are not necessarily valid in dynamics. There exist P cS relationships which take into account dynamic effects. But the combination of hysteretic and dynamic effects in the capillary relationship has not been considered yet. In this paper, we have developed new models of capillary hysteresis which also include dynamic effects. In doing so, thermodynamic considerations are employed to ensure the admissibility of the new relationships. The simplest model is constructed around main imbibition and drainage curves and assumes that all scanning curves are vertical lines. The dynamic effect is taken into account by introducing a damping coefficient in P cS equation. A second-order model of hysteresis with inclined scanning curves is also developed. The simplest version of proposed models is applied to two-phase incompressible flow and an example problem is solved.  相似文献   

10.
An interacting capillary bundle model is developed for analysing immiscible displacement processes in porous media. In this model, pressure equilibration among the capillaries is stipulated and capillary forces are included. This feature makes the model entirely different from the traditional tube bundle models in which fluids in different capillaries are independent of each other. In this work, displacements of a non-wetting phase by a wetting phase at different injection rates were analysed using the interacting capillary bundle model. The predicted evolutions of saturation profiles were consistent with both numerical simulation and experimental results for porous media reported in literature which cannot be re-produced with the non-interacting tube bundle models.  相似文献   

11.
A droplet train model proposed by Foulser {\it et al.} ({\it Transport in Porous Media} (1991), 223) is modified with addition of capillary resistance. It is shown that linear transport equations for this model can be represented in the Onsager form, where the generalized thermodynamic forces are pressure gradients of corresponding phases. In particular, the onset of capillary interactions give rise to the nonzero and equal cross term coefficients.  相似文献   

12.
Capillary fingering: Percolation and fractal dimension   总被引:1,自引:0,他引:1  
We present experimental and theoretical results concerning immiscible displacements (drainage) in 2-dimensional permeable media. When capillary forces are predominant, the injected fluid presents very thin fingers and the Representative Elementary Volume concept cannot be used for describing the partial saturations. The purpose of this paper is to show how this classical concept can be replaced by a statistical approach based on fractal geometry.Communication presented at the International Symposium on the Stochastic Approach to Subsurface Flow, Montvillargenne 4–7 June 1985.  相似文献   

13.
CO_2毛细捕获机制是CO_2地质封存中的关键科学问题,然而有关孔隙尺度下(微米极)超临界CO_2毛细捕获的研究较少.采用高压流体-显微镜-微观模型实验装置,开展超临界CO_2条件(8.5 MPa,45?C)下CO_2驱替水(排水)和水驱替CO_2(吸湿)实验,采用高分辨率照相机采集CO_2水两相流运动图像,并借助光学显微镜直接观测孔隙尺度下CO_2毛细捕获特征.同时,采用计算流体动力学方法对实验过程进行三维数值模拟.数值模拟不仅反映了实验过程中两相流驱替锋面的推进过程,还刻画了孔隙尺度下被捕获的CO_2液滴/团簇三维空间形态特征.最后,基于数值模拟给出了CO_2初始饱和度与残余饱和度曲线,即毛细捕获曲线,并对比分析了3种毛细捕获曲线预测模型(即Jurauld模型、Land模型和Spiteri模型)的优劣.分析表明,Jurauld模型的描述能力稍优于Land模型,Spiteri模型的描述能力较弱.由于Land模型只需单个参数,且参数具有明确的物理意义,因此在实际工程中,建议优先采用Land模型.  相似文献   

14.
Perturbation methods are used to study the interaction of wetting fronts with impervious boundaries in layered soils. Solutions of Richards' equation for horizontal and vertical infiltration problems are considered. Asymptotically accurate solutions are constructed from outer solutions and boundary-layer corrections. Results are compared with numerical simulations to demonstrate a high level of accuracy.  相似文献   

15.
A computer-aided simulator of immiscible displacement in strongly water-wet consolidated porous media that takes into account the effects of the wetting films is developed. The porous medium is modeled as a three-dimensional network of randomly sized unit cells of the constricted-tube type. Precursor wetting films are assumed to advance through the microroughness of the pore walls. Two types of pore wall microroughness are considered. In the first type of microroughness, the film advances quickly, driven by capillary pressure. In the second type, the meniscus moves relatively slowly, driven by local bulk pressure differences. In the latter case, the wetting film often forms a collar that squeezes the thread of oil causing oil disconnection. Each pore is assumed to have either one of the aforementioned microroughness types, or both. The type of microroughness in each pore is assigned randomly. The simulator is used to predict the residual oil saturation as a function of the pertinent parameters (capillary number, viscosity ratio, fraction of pores with each type of wall microroughness). These results are compared with those obtained in the absence of wetting films. It is found that wetting films cause substantial increase of the residual oil saturation. Furthermore, the action of the wetting films causes an increase of the mean volume of the residual oil ganglia.  相似文献   

16.
We have studied the flow of a non-aqueous phase liquid (NAPL, or oil), water and air at the pore scale using a micromodel. The pore space pattern from a photomicrograph of a two-dimensional section through a Berea sandstone was etched onto a silicon wafer. The sizes of the pores in the micromodel are in the range 3–30,m and are the same as observed in the rock from which the image was taken. We conducted three-phase displacement experiments at low capillary numbers (in the order of 10-7) to observe the presence of predicted displacement mechanisms at the pore scale. We observed stable oil layers between the wetting phase (water) and the non-wetting phase (gas) for the water–decane–air system, which has a negative equilibrium spreading coefficient, as well as four different types of double displacements where one fluid displaces another that displaces a third. Double imbibition and double drainage are readily observed, but the existence of an oil layer surrounding the gas phase makes the other double displacement combinations very unlikely.  相似文献   

17.
The flow behavior of bicomponent polymer blends of four types of polymers (polypropylene, polystyrene, high-density polyethylene and polymethyl-methacrylate) was examined using a capillary extrusion rheometer. The viscosity of the blend was generally less than the value calculated by the theoretical or empirical additivity rules proposed in previous reports, whereas the entrance pressure loss, which is considered to be an effect of elasticity, was larger than the estimated value. Thus the variation of the viscosity with blending ratio was inversely proportional to the variation in the elastic property. The cross-section of the material extruded in a roughly dispersed state showed an annularly stratified flow pattern in which the lower viscosity component polymer appeared to form the outer skin layer. However, the observation that the viscosity of the properly blended material at certain blending ratios was sometimes lower than that of either homopolymer could not be explained.  相似文献   

18.
Microvisual Study of Multiphase Gas Condensate Flow in Porous Media   总被引:4,自引:0,他引:4  
Gas condensate reservoirs constitute a significant portion of hydrocarbon reserves worldwide. The liquid drop-out in these reservoirs may lead to recovery problems such as near wellbore permeability impairment and uncertainty in the actual location of the target condensate. Such technical issues can be addressed through improved understanding of the formation of condensate and the multiphase flow of gas/condensate/water in the reservoir as characterized by relative permeability curves. The appropriate relative permeability curves in turn can be used in reservoir simulators to assist in optimization of field development. This paper reports results of experiments conducted in micromodels, in support of possible core flow tests, using reservoir fluids under reservoir conditions. In particular, visualizations of condensate formation with and without connate water are presented and the differences between the two cases as well as the possible implications for the relative permeability measurements are discussed. Furthermore, the flow of gas and condensate at different force ratios (capillary and Bond numbers) are presented. It is postulated that a single dimensionless number may not be sufficient to characterize the multiphase flow in gas condensate reservoirs. The physical mechanisms occurring under various field conditions are examined in the light of these observations.  相似文献   

19.
The uni-directional propagation of oil injected into water flowing through a water wetted porous slab of a finite length is investigated. The inlet and outlet edges of the slab are impermeable to the oil flux. Hence, the oil accumulates within the slab, thereby leading to a saturation build-up-capillary end effect. This phenomenon is studied analytically on the basis of a nonlinear equation describing oil-water transport in porous media. A dimensionless criterion is derived, which governs the appearance and relative strength of the capillary end effect. For weak oil-water interfacial tension (large capillary number) and long porous slabs the above effect is not observed and the temporal evolution of the oil saturation is described by the Buckley-Leverett solution. Short porous slabs are found to be almost entirely subjected to the capillary end effect. Intermediate situations are identified and quantitatively described, in which the downstream part of the slab may be divided into two zones: one-characterized by the capillary end effect, and the other being a Buckley-Leverett zone.It is shown, that the oil flux injected into the slab is limited by a maximum value which depends upon the location of the injection point. The partition of the inlet flux between the upstream and downstream directions is investigated. In the upstream side of the porous slab the oil moves under the action of free imbibition only. It is found that the upstream flux is limited by the value, which is independent of the slab's length and of the location of the injection point.  相似文献   

20.
A simple process-based model of three-phase displacement cycles for both spreading and non-spreading oils in a mixed-wet capillary bundle model is presented. All possible pore filling sequences are determined analytically and it is found that the number of pore occupancies that are permitted on physical grounds is actually quite restricted. For typical non-spreading gas/oil/water systems, only two important cases need to be considered to see all types of allowed qualitative behaviour for non-spreading oils. These two cases correspond to whether water or gas is the intermediate-wetting phase in oil-wet pores as determined by the corresponding contact angles, that is, cos o gw > 0 or cos o gw < 0, respectively. Analysis of the derived pore occupancies leads to the establishment of a number of relationships showing the phase dependencies of three-phase capillary pressures and relative permeabilities in mixed-wet systems. It is shown that different relationships hold in different regions of the ternary diagram and the morphology of these regions is discussed in terms of various rock/fluid properties. Up to three distinct phase-dependency regions may appear for a non-spreading oil and this reduces to two for a spreading oil. In each region, we find that only one phase may be specified as being the intermediate-wetting phase and it is only the relative permeability of this phase and the capillary pressure between the two remaining phases that depend upon more than one saturation. Given the simplicity of the model, a remarkable variety of behaviour is predicted. Moreover, the emergent three-phase saturation-dependency regions developed in this paper should prove useful in: (a) guiding improved empirical approaches of how two-phase data should be combined to obtain the corresponding three-phase capillary pressures and relative permeabilities; and (b) determining particular displacement sequences that require additional investigation using a more complete process-based 3D pore-scale network model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号