首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A study was carried out on the direct determination of Cr and Mn in urine using simultaneous atomic absorption spectrometry (SIMAAS). The heating program conditions, the absorbance signal profiles, the influence of different chemical modifiers, and the urine sample volume delivery into the tube were optimized to perform the calibration with aqueous solutions. Among several chemical modifiers tested, the best recovery and repeatability results were obtained for 3 microg Mg(NO3)2. On using this modifier, the pyrolysis and atomization temperatures for simultaneous determination of Cr and Mn were 1,300 degrees C and 2,500 degrees C, respectively. Urine samples were diluted (1+1) with 2.0% (v/v) HNO3 + 0.05% (w/v) Triton X-100 prepared in high purity water. A 20-microL aliquot of analytical solution and 10 microL of chemical modifier solution were delivered to the graphite tube. The characteristic masses were 7.8 pg for Cr (RSD=4.0%) and 4.6 pg for Mn (RSD=2.6%). The limits of detection were 0.08 microg L(-1) (n=20, 3s) for Cr and 0.16 microg L(-1) (n=20, 3s) for Mn. Recovery studies for 1.0 or 2.5 microg L(-1) of Cr and Mn added to different urine samples showed acceptable results for Cr (100%, RSD=14%) and Mn (88%, RSD=5.6%).  相似文献   

2.
Ruthenium (Ru), thermally deposited on a integrated platform graphite furnace, was investigated as a permanent modifier for the determination of Aluminum (Al) in blood serum and urine by electrothermal atomic absorption spectrometry (ETAAS). The platform was treated with 500 μg of Ru as previously described. The pyrolysis and atomization temperatures for each material were of 1300 and 2300 °C, for serum sample and of 1000 and 2400 °C, for urine. The characteristic mass were of 31 and 33 pg for Al in serum sample and urine, respectively (recommended of 31 pg for Al in nitric acid 0.2% (v/v)). For this reason, the calibration was made with aqueous solutions for both the samples. Calibration curves presented r of 0.99145 and 0.99991 for serum and urine, respectively. With the optimized temperatures, being analyzed eight spiked blood serum samples, the recovery was between 95.90 and 113.50%. Two certified urines samples were analyzed with good agreement between experimental and reference values. In both the samples the R.S.D. were <5% (n=3). The detection limit (k=3, n=10) was of 0.40 μg of Al per liter for both the samples. The absorption pulses obtained were symmetrical, with very low background and without interferences. The life time of the tube-platform was higher than 600 cycles of atomizations for both the urine and serum samples.  相似文献   

3.
Lima EC  Barbosa F  Krug FJ  Tavares A 《Talanta》2002,57(1):177-186
A tungsten-rhodium treatment on the integrated platform of a transversely heated graphite atomiser was used as a permanent chemical modifier for the determination of copper in biological materials by using digested samples as well as slurry sampling in electrothermal atomic absorption spectrometry. The W-Rh permanent modifier was as efficient as Pd+Mg(NO(3))(2) conventional modifier for obtaining good Cu thermal stabilisation in the digested and slurry samples. The permanent W-Rh modifier remained stable by approximately 300 and 250 firings when 20 mul of digested sample and 20 mul of slurry were delivered into the atomiser, respectively. In addition, the permanent modifier increased the tube lifetime up to 1370 and 744 analytical measurements in the digested and slurry samples, respectively. Also, when the W-Rh permanent modifier was employed, there was less variation of the slope of the analytical curves during the total atomiser lifetime, resulting in a decreased need of re-calibration during routine analysis, increasing the sample throughput, and consequently diminishing the variable analytical costs. Detection limits obtained with W-Rh permanent modifier were 0.64 and 0.33 mug g(-1) Cu for digested (dilution factor 100 ml g(-1)) and 1.0% m/v slurries of biological materials, respectively. Results for the determination of copper in the samples were in agreement with those obtained with decomposed sample solutions by using Pd+Mg(NO(3)), since no statistical differences were found after applying the paired t-test at the 95% level.  相似文献   

4.
Different chemical modifiers for use with electrothermal atomic absorption spectrometry (ET AAS) were investigated in relation to determining the selenium in human urine samples. The samples were diluted in a solution containing 1% v/v HNO3 and 0.02% m/v cetyltrimethylammonium chloride (CTAC). Studying the modifiers showed that the use of either Ru or Ir as the permanent modifier gave low sensitivity to Se and the peak shape was very noisy, while Zr or Rh gave no peak at all. The same occurred when Zr was used in solution. For mixtures of permanent modifiers, Ir plus Rh or Zr plus Rh gave very low sensitivity, Zr plus Rh with co-injection of Ir in solution was also not efficient, Zr plus Rh in solution gave good sensitivity, but the best results were obtained with a mixture of Zr and Rh as the permanent modifier and co-injection of Rh in solution. Using this last modifier, the following dilutions with the HNO3 and CTAC were studied: 1:1, 1:2, 1:3 and 1:4. The best dilution was 1:1, which promoted good sensitivity and a more defined peak shape and made it possible to correct for the background using a deuterium arc lamp. Under these conditions, a characteristic mass of 26±0.2 pg was obtained for Se in aqueous solution. Six certified urine samples were analyzed using matrix matching calibration and the measured concentrations were in agreement with the certified values, according to a t-test at the 95% confidence level. Recovery tests were carried out and the recoveries were in the range 100–103%, with relative standard deviation better than 9%. The limit of detection (LOD, 3 sd, n=10) was 3.0 μg L−1 in the sample. The treated graphite tube could be used for at least 600 atomization cycles without significant alteration of the analytical signal.  相似文献   

5.
The feasibility of Ru as a permanent modifier for the determination of Cd in biological samples treated with tetramethylammonium hydroxide (TMAH) by ET AAS was investigated. The tube treatment with Ru was carried out only once and lasted for about 300 atomization cycles. The pyrolysis and atomization temperatures, 750 °C and 1300 °C, respectively, were chosen from the temperature curves. The sample dissolution procedure was very simple: a sample aliquot was mixed with a small volume of a 25% m/v TMAH solution, the volume was made up to 50 ml and the mixture was kept at 60 °C for 1 h. Six certified biological reference materials were analyzed and the obtained Cd concentrations are within the 95% confidence interval of the certified values, proving the accuracy of the proposed procedure for a variety of biological samples. The calibration curve, with correlation coefficient higher than 0.99, was established for a working range up to10 μg l−1. The precision was good as demonstrated by relative standard deviations below 3%, except for one sample. The limit of detection (3σ) was 0.05 μg l−1 and the characteristic mass was 1.30 pg, obtained in the presence of the Ru modifier.  相似文献   

6.
A method for the multielement determination of cadmium and lead in urine is proposed by simultaneous electrothermal atomic absorption spectrometry (SIMAAS) with an end-capped transversely heated graphite atomizer (EC-THGA). The best conditions for cadmium and lead determination were obtained in the presence of NH4H2PO4 as a chemical modifier, using 500 degrees C and 1800 degrees C as the pyrolysis and atomization temperatures, respectively. Urine samples were diluted 1 + 4 directly in autosampler cups with a mixture of 0.125% (w/v) Triton X-100 + 2.5% (v/v) HNO3 + 0.31% (w/v) NH4H2PO4. The optimized heating program was carried out in 57 s, and the instrument calibration was done with aqueous reference solutions. The use of EC-THGA increased the sensitivity of cadmium and lead by 14% and 25%, respectively. The detection limits (n = 20, 3delta) were 0.03 microg L(-1) (0.36 pg) for cadmium and 0.57 microg L(-1) (6.8 pg) for lead. The performance of EC-THGA was acceptable up to 500 heating cycles. The reliability of the entire procedure was checked with the analysis of a lyophilized urine certified reference material. The found concentrations were in agreement with the recommended values (95% confidence level).  相似文献   

7.
In this work, methodologies to determine manganese (Mn) in urine and whole blood by electrothermal atomic absorption spectrometry were developed. The use of Ru, Rh, and Zr as permanent modifiers, Pd as a modifier in solution, and the condition without modifier were investigated for the direct determination of Mn in urine and whole blood samples. The best results for Mn in urine and in whole blood were obtained without modifier use. The analytical characteristic, such as accuracy, precision and limit of detection of the proposed methodology were adequate.  相似文献   

8.
Methods for the direct determination of Ni in human blood serum and urine by electrothermal atomic absorption spectrometry (ETAAS) are described. Hydrogen peroxide was proposed as matrix modifier, assisting thermal decomposition of proteins during the ashing step. A pyrolysis temperature of 1,200 degrees C was found to be optimal while 2,100 degrees C and 2,200 degrees C were found to be optimal atomizing temperatures for Ni in serum and urine respectively. Calibration was performed by using a calibration curve prepared with aqueous standard solutions of Ni (glycine must be used as modifier for Ni in aqueous solutions). The limits of detection, defined as the blank values plus 3 times the standard deviation of the blank values, were 0.2 microg/L for both serum and urine samples. Relative standard deviations for serum samples with concentrations of Ni in the range 0.5-2 microg/L were 10-15% and for urine samples with Ni concentrations in the range 0.5-2.5 microg/L were 8-10%.  相似文献   

9.
The present work evaluated the use of iridium (Ir) as permanent modifier for the determination of total selenium in urine and serum by graphite furnace atomic absorption spectrometry. Concerning urine, the presence of trimethylselenonium (TMSe+) was especially considered. Pyrolysis and atomization temperatures of 1,000 and 2,100°C, respectively, were used. For nondigested urine and serum samples, 0.2% v/v HNO3 and Triton X-100 were used as diluents, respectively, and the same initial platform Ir treatment was effective for up to 1,100 atomization cycles. Good precision [less than 5% relative standard deviation (RSD)] can be achieved with the proposed method. Low TMSe+ recovery was observed for nondigested urine samples. Thus, if this species is to be considered in urine analysis, a previous external mineralization step was found to be necessary. Alternatively, an in situ oxidation treatment was developed. Detection limits of 8, 10, and 7 μg l−1 were obtained after dilution, microwave-assisted digestion, and in situ oxidation procedures, respectively. The accuracy of the method was validated by the analysis of certified reference or commercial quality control materials and spiked samples.  相似文献   

10.
The direct determination of chromium in urine by electrothermal atomic absorption spectrometry (ETAAS) using graphite tubes modified with tungsten is proposed. Modification of the graphite is made by tungsten electrodeposition over the whole surface atomizer followed by carbide formation by heating the tube inside its own furnace. For tungsten electrocoating, the graphite tube and a platinum electrode were connected to a power supply as cathode and anode, respectively, and immersed in a solution containing 2 mg of W in 0.1% v/v HNO3. Then, 5 V was applied between the electrodes during 20 min for tungsten electrodeposition over the whole atomizer. A SpectrAA 220 Varian atomic absorption spectrometer equipped with a deuterium background corrector was used throughout. Undiluted urine (20 μl) was delivered over the tungsten-treated tube and the chromium-integrated absorbance was measured after applying a suitable heating program with maximum pyrolysis at 1300 °C and atomization at 2500 °C. With electrodeposited tungsten modifier, the tube lifetime increased up to four times when compared to previous published methods for Cr determination in urine by ETAAS, reaching 800 firings. Method detection limit (3 S.D.) was 0.10 μg l−1, based on 10 integrated absorbance measurements of a urine sample with low Cr concentration. Two reference materials of urines (SRM 2670) from National Institute of Standards and Technology (NIST) were analyzed for method validation. For additional validation, results obtained from eight human urine samples were also analyzed in a spectrometer with Zeeman effect background correction.  相似文献   

11.
张名均  丁世家  易钢 《色谱》2004,22(4):416-419
建立了同时分离检测尿中新喋呤(neopterin,NP)和生物喋呤(biopterin,BP)的高效液相色谱(HPLC)-荧光检测方法。采用Hypersil BDS C18柱、甲醇-水(体积比为10∶90)流动相(流速0.5 mL/min)、激发波长360 nm、发射波长 440 nm、柱温20 ℃的色谱条件,同时分离测定了尿中的NP和BP。尿标本经三氯乙酸处理,在4 ℃下,以12000 r/min的速率离心15 min,上清液用碱中和后,取30 μL直接进样。研究结果表明,NP的线性范围为0.12~10  相似文献   

12.
Single noble metal permanent modifiers such as, Rh, Ir, and Ru, as well as mixed tungsten plus noble metal (W–Rh, W–Ru, W–Ir) permanent modifiers thermally deposited on the integrated platform of a transversally heated graphite atomizer (TGA) were employed for the determination of antimony in sludge, soil, sediment, coal, ash and water samples by electrothermal atomic absorption spectrometry (ETAAS).Microwave digests of solid samples and water samples were directly introduced into different pre-treated platforms of graphite tubes. The performance of the modifiers for accurate antimony determination in real samples depended strongly on the type of permanent modifier chosen. The single noble metal (Rh, Ir and Ru) permanent modifiers were suitable for analyte determinations in simpler matrices, such as waters (recoveries of certified values 95–105%), but the analyte recoveries of certified values in sludge, soil, sediment, coal, and ash samples were always lower than 90%. On the other hand, for the determination of antimony, using W–Rh, W–Ru, and W–Ir permanent modifiers presented recoveries of certified values within 95–105% for all the samples.Long-term stability curves obtained for the determination of antimony in environmental samples with different permanent modifiers (Rh, Ir, Ru, W–Rh, W–Ir, W–Ru) showed that the improvement in tube lifetime depends on the tungsten deposit onto the platform. The tungsten plus noble metal permanent modifier presents a tube lifetime of at least 40% longer compared to a single permanent modifier.  相似文献   

13.
A method for direct determination of cadmium, chromium, copper and lead in sediments and soil samples by electrothermal atomic absorption spectrometry using Zr, Ir, etylenediamine acetic acid (EDTA), Zr + EDTA, Ir + EDTA, Zr + Ir and Zr + Ir + EDTA as chemical modifiers in 0.5% (v/v) Triton X-100 plus 0.2% (v/v) nitric acid mixture used as diluent was developed. The effects of mass and mass ratio of modifiers on analytes in sample solutions were studied. The optimum masses and mass ratios of modifiers: 20 microg of Zr, 4 microg of Ir, 100 microg of EDTA and 20 microg of Zr + 4 microg of Ir + 100 microg of EDTA, were used to enhance the analyte signals. Pyrolysis and atomization temperatures, atomization and background absorption profiles, characteristic masses, and detection limits of analytes in samples were compared in the presence or absence of a modifier. The detection limits and characteristic masses of analytes in a 0.5% (m/v) dissolved sample (dilution factor of 200 ml g(-1)) obtained with Zr + Ir + EDTA are 8.0 ng g(-1) and 1.2 pg for Cd, 61 ng g(-1) and 4.3 pg for Cr, 32 ng g(-1) and 23 pg for Cu, and 3.4 ng g(-1) and 19 pg for Pb, respectively. The Zr + Ir + EDTA modifier mixture was found to be preferable for the determination of analytes in sediment and soil-certified and standard reference materials. Depending on the sample type, the percent recoveries of analytes were increased from 81 to 103% by using the proposed modifier mixture; the results obtained are in good agreement with the certified values.  相似文献   

14.
Cloud point extraction (CPE) is proposed as a pre-concentration procedure for the determination of Pb and Cd in undigested urine by graphite furnace atomic absorption spectrometry (GF AAS). Aliquots of 0.5 mL urine were acidified with HCl and the chelating agent ammonium O,O-diethyl dithiophosphate (DDTP) was added along with the non-ionic surfactant Triton X-114 at the optimized concentrations. Phase separation was achieved by heating the mixture to 50 °C for 15 min. The surfactant-rich phase was analyzed by GF AAS, employing the optimized pyrolysis temperatures of 900 °C for Pb and 800 °C for Cd, using a graphite tube with a platform treated with 500 μg Ru as permanent modifier. The reagent concentrations for CPE (HCl, DDTP and Triton X-114) were optimized using a Box–Behnken design. The response surfaces and the optimum values were very similar for aqueous solutions and for the urine samples, demonstrating that aqueous standards submitted to CPE could be used for calibration. Detection limits of 40 and 2 ng L− 1 for Pb and Cd, respectively, were obtained along with an enhancement factor of 16 for both analytes. Three control urine samples were analyzed using this approach, and good agreement was obtained at a 95% statistical confidence level between the certified and determined values. Five real samples have also been analyzed before and after spiking with Pb and Cd, resulting in recoveries ranging from 97 to 118%.  相似文献   

15.
Lima EC  Brasil JL  Vaghetti JC 《Talanta》2003,60(1):103-113
Single noble metal permanent modifiers such as, Rh, Ir, and Ru, as well as mixed tungsten plus noble metal (W-Rh, W-Ru, W-Ir) permanent modifiers thermally deposited on the integrated platform of transversally heated graphite atomizer were employed for the determination of arsenic in sludges, soils, sediments, coals, ashes and waters by electrothermal atomic absorption spectrometry. Microwave digests of solid samples and water samples were employed for obtaining the analytical characteristics of the methods with different permanent modifiers. The performance of the modifiers for arsenic determination in the real samples depended strongly on the type of permanent modifier chosen. The single noble metal (Rh, Ir and Ru) permanent modifiers were suitable for the analyte determinations in simpler matrices such as waters (recoveries of certified values 95-105%), but the analyte recoveries of certified values in sludges, soils, sediments, coals, and ashes were always lower than 90%. On the other hand, for the determination of arsenic, using W-Rh, W-Ru, and W-Ir permanent modifiers presented recoveries of certified values within 95-105% for all the samples. Long-term stability curves obtained for the determination of arsenic in environmental samples with different permanent modifiers (Rh, Ir, Ru, W-Rh, W-Ir, W-Ru) showed that the improvement in the tube lifetime depends on the tungsten deposit onto the platform. The tungsten plus noble metal permanent modifier presents a tube lifetime of at least 35% longer when compared with single permanent modifier. The results for the determination of As employing different permanent modifiers in the samples were in agreement with the certified reference materials, since no statistical differences were found after applying the paired t-test at the 95% confidence level.  相似文献   

16.
The most severe interferences in atomic absorption spectrometry are caused by the presence of anions when they are in different concentrations in the samples and in the calibration solutions. The analyte addition technique or matrix matching calibration can be employed to minimize or compensate the non-spectral interferences, but they are time consuming or difficult to be carried out. The use of chemical modifiers usually allows higher pyrolysis temperatures and consequently the removal of components of the sample matrix, equalizing the analyte signal in the sample and in the calibration solution. In this work, a mixture of Ir and Rh is proposed as permanent modifier to determine As, Cd and Pb in diluted hydrochloric, sulfuric and phosphoric acids and in ethanol and methanol by electrothermal atomic absorption spectrometry (ET AAS) with calibration against 1% v/v nitric acid aqueous solutions. The performance of the proposed permanent modifier was compared to that of Pd plus Mg nitrates in solution. Better recoveries, low background levels and faster analysis were obtained with the permanent modifier. The permanent modifier was also successfully employed for the determination of As, Cd and Pb in different concentrations of sulfuric and hydrochloric acids. For the phosphoric acid, the proposed modifier was only efficient for acid concentrations up to 2% v/v for As and up to 5% v/v for Cd and Pb. The precision, expressed as the relative standard deviation (n=3), was lower than 10%, for all samples, including ethanol and methanol.  相似文献   

17.
Permanent modifiers (V, Ir, Ru, V-Ir, V-Ru, and W-V) thermally coated on to platforms of pyrolytic graphite tubes were employed for the determination of Cd, Pb, and Zn in botanic and biological slurries by electrothermal atomic absorption spectrometry (ETAAS). Conventional Pd + Mg(NO3)2 modifier mixture was also used for the determination of analytes in slurries and digested samples. Optimum masses and mass ratios of permanent modifiers for Cd, Pb, and Zn in slurry sample solutions were investigated. The 280 μg of V, 280 μg of V + 200 μg of Ir, 280 μg of V + 200 μg of Ru or 240 μg of W + 280 μg of V in 0.2% (v/v) Triton X-100 plus 0.5% (v/v) HNO3 mixture was found as efficient as 5 μg of Pd + 3 μg of Mg(NO3)2 modifier mixture for obtaining thermal stabilization, and for obtaining best recoveries. Optimization conditions of analytes, such as pyrolysis and atomization temperature, characteristic masses and detection limits, and atomization and background peak profiles were studied with permanent and 5 μg of Pd + 3 μg of Mg(NO3)2 conventional modifiers and compared with each other. The permanent V-Ir, V-Ru, and W-V modifiers remained stable for approximately 250-300 firings when 20 μl of slurries and digested samples were delivered into the atomizer. In addition, the mixed permanent modifiers increase the tube lifetime by 50-95% when compared with untreated platforms. The characteristic masses and detection limits of analytes (dilution factor of 125 ml g−1) obtained with V-Ir based on integrated absorbance as example for 0.8% (m/v) slurries were 1.0 pg and 3 ng g−1 for Cd, 18 pg and 17 ng g−1 for Pb, and 0.7 pg and 4 ng g−1 for Zn, respectively. The results of analytes obtained by employing V-Ir, V-Ru, and W-V permanent modifier mixtures in botanic and biological certified and standard reference materials were in agreement with the certified values of reference materials.  相似文献   

18.
A method for determination of manganese and selenium in serum by simultaneous atomic absorption spectrometry (SIMAAS) is proposed. The samples (30 mul) were diluted (1+3) to 1.0% v/v HNO(3)+0.10% w/v Triton X-100 directly in the autosampler cups. A total of 20 mug Pd+10 mug Mg(NO(3))(2) was used as chemical modifier. The pyrolysis and atomization temperatures for the simultaneous heating program were 1200 and 2300 degrees C, respectively. The addition of an oxidant mixture (15% w/w H(2)O(2)+1.0% v/v HNO(3)) and the inclusion of a low temperature pyrolysis step (400 degrees C) attenuated the build-up of carbonaceous residues onto the integrated platform. An aliquot of 15 mul of the reference or sample solution was introduced into the graphite tube and heated at 80 degrees C; subsequently, 10 mul of oxidant mixture+10 mul of chemical modifier was introduced over that aliquot and the remaining heating program steps were executed. This strategy allowed at least 250 heating cycles for each THGA tube without analytical signal deterioration. The characteristic masses for manganese (6 pg) and selenium (46 pg) were estimated from the analytical curves. The detection limits were 6.5 pg (n=20, 3delta) for manganese and 50 pg (n=20, 3delta) for selenium. The reliability of the entire procedure was checked with the analysis of serum from Seronormtrade mark Trace Elements in Serum (Sero AS) and by addition and recovery tests (97+/-9% for manganese and 96+/-7% for selenium) using five serum samples.  相似文献   

19.
In view of its intended use as a sample for proficiency testing or as a reference material the stability of the extractable trace element contents of a soil from an irrigation field was tested using the extraction with 1 mol/L ammonium nitrate solution according to DIN 19730. Therefore, changes of the extractability of sterilized and non sterilized soil samples stored at different temperatures were evaluated over a period of 18 months. Sets of bottles were kept at -20 degrees C, +4 degrees C, about +20 degrees C and +40 degrees C, respectively. The NH4NO3 extractable contents of Cd, Cr, Cu, Ni, Pb and Zn were determined immediately after bottling and then after 3, 6, 12 and 18 months with ICP-AES or ETAAS. Appropriate storage conditions are of utmost importance to prevent deterioration of soil samples prepared for the determination of NH4NO3 extractable trace element contents. Temperatures above +20 degrees C must be avoided. The observed changes in the extractability of the metals (especially for Cr and Cu) most likely could be related to thermal degradation of the organic matter of the soil. There is no need to sterilize dry soil samples, because microbiological activity in soils with a low moisture content appears to be negligible with regard to trace element mobilization.  相似文献   

20.
A multi-element graphite furnace atomic absorption spectrometry (GFAAS) method was elaborated and applied for the simultaneous determination of As, Cd, Cr, Cu, and Pb in various kinds of honey samples (acacia, floral, linden, rape, and milkweed) using the transversally heated graphite atomiser (THGA) with end-capped tubes and integrated graphite platforms (IGPs). For comparative GFAAS analysis, direct (without digestion) and indirect (with digestion in a microwave oven) sample preparation procedures were tested. The effects of several chemical modifiers, such as NH4H2PO4, NH4H2PO4-Mg(NO3)2, and Pd(NO3)2-Mg(NO3)2, were studied to obtain optimal pyrolysis and atomization conditions for the set of analytes studied. The most efficient modifier was proved to be the mixture of 5 μg Pd (applied as nitrate) plus 3 μg Mg(NO3)2, allowing the optimal 600 °C pyrolysis and 2300 °C atomization temperatures. To prevent the sputtering and foaming of the matrix during the drying and pyrolysis steps of the furnace heating program, the sample and modifier solutions (20 + 5 μl, respectively) were dispensed together onto the IGP of the THGA pre-heated at 80 °C.The effect of increasing concentration of honey matrix was studied on the integrated absorbance (Aint) signals of analytes. The Aint signals of Cr and Pb were not altered up to 10% (m/v) matrix content in the sample solutions. The matrix effect was slightly suppressive on the Aint signals of As, Cd, and Cu above 2% (m/v) honey concentration. The recovery was found to be ranged between 85 and 115% for Cd, Cr, Cu, and Pb, whereas it was a lower, compromise value of 70-99% for As. The limit of detection (LOD) data were 1, 0.04, 0.09, 0.3, and 0.6 μg l−1 for As, Cd, Cr, Cu, and Pb, respectively, which values correspond to 20, 0.8, 1.8, 5.3, and 12 ng g−1, respectively, in the solid samples. The characteristic masses were found to be 21 pg As, 1.3 pg Cd, 4 pg Cr, 12 pg Cu, and 33 pg Pb. The As, Cd, Cr, Cu, and Pb contents of the studied 42 honey samples varied significantly, i.e. from below the LOD up to 13, 3.3, 109, 445, and 163 ng g−1, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号