首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The relaxation dynamics of a multiple exciton complex (multiexciton) confined in a semiconductor quantum dot has been investigated. Emission signals from a single self-organized GaAs/Al0.3Ga0.7As quantum dot are temporally resolved with picosecond time resolution. The emission spectra consisting of the multiexciton structures are observed to depend on the delay time and the excitation intensity. Quantitative agreement is found between the experimental data and the calculation based on a model describing the successive relaxation of multiexcitons.  相似文献   

2.
邓宇翔  颜晓红  唐娜斯 《物理学报》2006,55(4):2027-2032
利用非平衡格林函数方法,研究了量子点环的相干输运性质. 结果表明:与一维量子点阵列 相比,量子点环中的电子出现更多新的准束缚能级. 量子点间耦合的增强会使微分电导振荡 出现退相干现象. 关键词: 量子点 电导  相似文献   

3.
We study the thermopower, thermal conductance, electric conductance and the thermoelectric figure of merit for a gate-defined T-shaped single quantum dot (QD). The QD is solved in the limit of strong Coulombian repulsion U, inside the dot, and the quantum wire is modeled on a tight-binding linear chain. We employ the X-boson approach for the Anderson impurity model to describe the localized level within the quantum dot. Our results are in qualitative agreement with recent experimental reports and other theoretical researches for the case of a quantum dot embedded into a conduction channel, employing analogies between the two systems. The results for the thermopower sign as a function of the gate voltage (associated with the quantum dot energy) are in agreement with a recent experimental result obtained for a suspended quantum dot. The thermoelectric figure of merit times temperature results indicates that, at low temperatures and in the crossover between the intermediate valence and Kondo regimes, the system might have practical applicability in the development of thermoelectric devices.  相似文献   

4.
Combined quantum wire and quantum dot system is theoretically predicted to show unique conductance properties associated with Coulomb interactions. We use a split gate technique to fabricate a quantum wire containing a quantum dot with two tunable potential barriers in a two-dimensional electron gas. We observe the effects of the quantum dot cavity on the electron transport through the quantum wire, such as Coulomb oscillations near the pinch-off voltage and periodic conductance oscillations on the first conductance plateau.  相似文献   

5.
Semiconductor quantum dots, so-called artificial atoms, have attracted considerable interest as mesoscopic model systems and prospective building blocks of the “quantum computer”. Electrons are trapped locally in quantum dots, forming controllable and coherent mesoscopic atom- and moleculelike systems. Electrostatic definition of quantum dots by use of top gates on a GaAs/AlGaAs heterostructure allows wide variation of the potential in the underlying two-dimensional electron gas. By distorting the trapping potential of a single quantum dot, a strongly tunnel-coupled double quantum dot can be defined. Transport spectroscopy measurements on such a system charged with N=0,1,2,… electrons are presented. In particular, the tunnel splitting of the double well potential for up to one trapped electron is unambiguously identified. It becomes visible as a pronounced level anticrossing at finite source drain voltage. A magnetic field perpendicular to the two-dimensional electron gas also modulates the orbital excitation energies in each individual dot. By tuning the asymmetry of the double well potential at finite magnetic field the chemical potentials of an excited state of one of the quantum dots and the ground state of the other quantum dot can be aligned, resulting in a second level anticrossing with a larger tunnel splitting. In addition, data on the two-electron transport spectrum are presented.  相似文献   

6.
Coupled double quantum dots and quantum dot superlattices are formed by utilizing the strain of an InP island on top of a near-surface multi-quantum-well structure. The number and composition of the quantum wells together with the thickness of the barrier separating the quantum wells are varied to investigate the coupling of the wave functions of the carriers confined in separate vertically stacked dots. Photoluminescence studies show that the reduction of the barrier thickness and the increase of the number of wells enhance the coupling, which is observed as red shift and narrowing of the quantum dot peak. The calculated shifts of the peak positions agree closely with the experimental values.  相似文献   

7.
Huan Yang 《中国物理 B》2022,31(9):90302-090302
The important applications of quantum dot system are to implement logic operations and achieve universal quantum computing based on different quantum nonlocalities. Here, we characterize the quantum steering, Bell nonlocality, and nonlocal advantage of quantum coherence (NAQC) of quantum dot system suffering nonunital and unital channels. The results reveal that quantum steering, Bell nonlocality, and NAQC can display the traits of dissipation, enhancement, and freezing. One can achieve the detections of quantum steering, Bell nonlocality, and NAQC of quantum dot system in different situations. Among these quantum nonlocalities, NAQC is the most fragile, and it is most easily influenced by different system parameters. Furthermore, considering quantum dot system coupling with amplitude damping channel and phase damping channel, these quantum nonlocalities degenerate with the enlargement of the channel parameters $t$ and $\varGamma$. Remarkably, measurement reversal can effectively control and enhance quantum steering, Bell nonlocality, and NAQC of quantum dot system suffering from decoherence, especially in the scenarios of the amplitude damping channel and strong operation strength.  相似文献   

8.
李季  吴世海  张雯雯  惠小强 《中国物理 B》2011,20(10):100308-100308
There are some disadvantages to Nikolopoulos et al.'s protocol [Nikolopoulos G M, Petrosyan D and Lambropoulos P 2004 Europhys. Lett. 65 297] where a quantum dot system is used to realize quantum communication. To overcome these disadvantages, we propose a protocol that uses a quantum dot array to construct a four-qubit spin chain to realize perfect quantum state transfer (PQST). First, we calculate the interaction relation for PQST in the spin chain. Second, we review the interaction between the quantum dots in the Heitler-London approach. Third, we present a detailed program for designing the proper parameters of a quantum dot array to realize PQST.  相似文献   

9.
基于GaAs/InAs-GaAs/ZnSe量子点太阳电池结构的优化   总被引:1,自引:0,他引:1       下载免费PDF全文
姜冰一  郑建邦  王春锋  郝娟  曹崇德 《物理学报》2012,61(13):138801-138801
基于GaAs/InAs-GaAs/ZnSe的P-i-N量子点太阳电池结构, 根据光学原理和扩散理论建立了光生电流密度与膜层厚度相关的数学模型, 定量分析了量子点层厚度等参数对太阳电池性能的影响,以期达到提高量子 点太阳电池转换效率的目的.理论模拟表明:在i层厚度取3000 nm时,优化后P(GaAs)型、N(ZnSe)型层 薄膜的最佳膜厚为1541 nm, 78 nm, 并在单一波长下太阳电池转换效率为20.1%;同时量子 点体积和温度对于量子点太阳电池I-V特性也会产生影响, 当量子点体积和温度逐渐增大时, 开路电压呈现减小趋势,使得转换效率降低.  相似文献   

10.
吴仍来  肖世发  薛红杰  全军 《物理学报》2017,66(22):227301-227301
量子点体系等离激元的研究是光电子学领域的热点.为进一步加深和完善对等离激元的量子效应的认识,本文利用紧束缚近似和线性响应理论研究了二维方形量子点体系对外场的集体响应.结果表明,当外场频率等于等离激元的频率时,量子点体系会有强烈的电荷振荡,并伴随着能量的极大吸收和近场的增强.在量子点中,等离子体存在分立的元激发.等离子体元激发的个数将随着量子点尺寸和电子个数的增加而增加.随量子点尺寸的增加,分立的等离激元将逐步呈现准连续的特性,即过渡为经典连续的等离激元,其频谱曲线演化为经典的色散曲线.结果还表明:随量子点尺寸的增加,等离激元的频率会红移,等离激元的激发强度会增大;随量子点中电子数的增加,等离激元的频率会蓝移,等离激元的激发强度会增大.  相似文献   

11.
在20 mK的极低温下测量了石墨烯纳米带量子点的电子输运性质,观测到清晰的库仑阻塞菱形块和对应量子点激发态的电导峰.对库仑阻塞近邻电导峰间距和峰值进行了统计分析,发现其统计分布分别满足无规矩阵理论描述的Wigner-Dyson分布和Porter-Thomas分布,说明石墨烯纳米带量子点在低温下出现了量子混沌现象.还讨论了这种长方形量子点中量子混沌的可能成因. 关键词: 石墨烯纳米带 量子点 库仑阻塞 量子混沌  相似文献   

12.
The supercurrent in a triangular triple quantum dot system is investigated by using the nonequilibrium Green's function method. It is found that the sign of the supercurrent can be changed from positive to negative with increasing the strength of spin-flip scattering, resulting in the π-junction transition. The supercurrent and the π-junction transition are also modulated by tuning the system parameters such as the gate voltage and the interdot coupling. The tunable π-junction transition is explained in terms of the current carrying density of states. These results provide the ways of manipulating the supercurrent in a triple quantum dot system.  相似文献   

13.
Calculations of electronic structures about the semiconductor quantum dot and the semiconductor quantum ring are presented in this paper. To reduce the calculation costs, for the quantum dot and the quantum ring, their simplified axially symmetric shapes are utilized in our analysis. The energy dependent effective mass is taken into account in solving the Schr?dinger equations in the single band effective mass approximation. The calculated results show that the energy dependent effective mass should be considered only for relatively small volume quantum dots or small quantum rings. For large size quantum materials, both the energy dependent effective mass and the parabolic effective mass can give the same results. The energy states and the effective masses of the quantum dot and the quantum ring as a function of geometric parameters are also discussed in detail.  相似文献   

14.
The evaluation of orientation of biomolecules immobilized on nanodevices is crucial for the development of high performance devices. Such analysis requires ultra high sensitivity so as to be able to detect less than one molecular layer on a device. Time-of-flight secondary ion mass spectrometry (TOF-SIMS) has sufficient sensitivity to evaluate the uppermost surface structure of a single molecular layer. The objective of this study is to develop an orientation analysis method for proteins immobilized on nanomaterials such as quantum dot particles, and to evaluate the orientation of streptavidin immobilized on quantum dot particles by means of TOF-SIMS. In order to detect fragment ions specific to the protein surface, a monoatomic primary ion source (Ga+) and a cluster ion source (Au3+) were employed. Streptavidin-immobilized quantum dot particles were immobilized on aminosilanized ITO glass plates at amino groups by covalent bonding. The reference samples streptavidin directly immobilized on ITO plates were also prepared. All samples were dried with a freeze dryer before TOF-SIMS measurement. The positive secondary ion spectra of each sample were obtained using TOF-SIMS with Ga+ and Au3+, respectively, and then they were compared so as to characterize each sample and detect the surface structure of the streptavidin immobilized with the biotin-immobilized quantum dots. The chemical structures of the upper surface of the streptavidin molecules immobilized on the quantum dot particles were evaluated with TOF-SIMS spectra analysis. The indicated surface side of the streptavidin molecules immobilized on the quantum dots includes the biotin binding site.  相似文献   

15.
屈晋先  段素青  杨宁 《中国物理 B》2017,26(12):127308-127308
We analyze the dynamic localization of two interacting electrons induced by alternating current electric fields in triple quantum dots and triple quantum dot shuttles. The calculation of the long-time averaged occupation probability shows that both the intra-and inter-dot Coulomb interaction can increase the localization of electrons even when the AC field is not very large. The mechanical oscillation of the quantum dot shuttles may keep the localization of electrons at a high level within a range if its frequency is quite a bit smaller than the AC field. However, the localization may be depressed if the frequency of the mechanical oscillation is the integer times of the frequency of the AC field. We also derive the analytical condition of two-electron localization both for triple quantum dots and quantum dot shuttles within the Floquet formalism.  相似文献   

16.
The detectivity of Quantum dot infrared photodetectors (QDIPs) has always attracted a lot attention as a very important performance parameter. In the paper, based on the theoretical model for the detectivity with the consideration of the common influence of the microscale electron transport, the nanoscale electron transport and the self-consistent potential distribution of the electrons, the dependence of the detectivity of the QDIP on temperature is discussed by analyzing the influence of the temperature on the average electrons number in a quantum dot. Specifically, the average electrons number in a quantum dot shows different change trends (from the increase to decrease) with the increase of the temperature, but the detectivity presents the single decrease trend with the temperature, which can provide the designers with the theoretical guidance for the performance optimization of the QDIP devices.  相似文献   

17.
A investigation of the linear and nonlinear optical properties for intersubband electronic transitions associated with a biexciton in a quantum dot has been performed by using the method of few-body physics. The optical absorption coefficients and the refractive index changes have been examined based on the computed energies and wave functions. It is over two orders of magnitude higher than that obtained in an exciton quantum dot. The results show that the optical absorption saturation intensity can be controlled by the confinement potential frequency and the relaxation time.  相似文献   

18.
We analyze the electroluminescence spectrum of an STM-tip-induced quantum dot in a GaAs surface layer. A flexible model has been developed, that combines analytical and numerical methods and describes the key features of many-particle states in the STM-tip-induced quantum dot. The dot is characterized by its depth and lateral width, which are experimentally controlled by the bias and the tunneling current. We find, in agreement with experiment, that increasing voltage on the STM-tip results in a red shift of the electroluminescence peaks, while the peak positions as a function of the electron tunneling current through the STM-tip reveal a blue shift.  相似文献   

19.
文瑞  张德平  田光善 《中国物理 B》2012,21(3):37401-037401
In the present paper, we shall rigorously re-establish the result of the single-particle function of a quantum dot system at finite temperature. Unlike the proof given in our previous work (Phys. Rev. B 74 195414 (2006)), we take a different approach, which does not exploit the explicit expression of the Gibbs distribution function. Instead, we only assume that the statistical distribution function of the quantum dot system is thermodynamically stable. As a result, we are able to show clearly that the electronic structure in the quantum dot system is completely determined by its thermodynamic stability. Furthermore, the weaker requirements on the statistical distribution function also make it possible to apply the same method to the quantum dot systems in non-equilibrium states.  相似文献   

20.
车驰*  柳青峰  马晶  周彦平 《物理学报》2013,62(9):94219-094219
从理论上分析了位移效应对量子点激光器的影响, 并推导了量子点激光器阈值电流相对变化、输出功率相对变化的位移损伤公式. 对量子点激光器进行了中子辐照实验, 观察到了阈值电流的增加. 结合实验结果确定了量子点载流子非辐射复合速率的损伤因子的表达式, 公式计算结果与实验结果符合较好, 证明了模型的正确性. 得到的公式可用于预测量子点激光器在辐射环境下的性能变化, 有着较大实际应用价值. 关键词: 量子点激光器 位移损伤 缺陷  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号