首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
Thermodynamic stability of metal–aminoacid complexes in water is discussed in terms of the Gibbs free energy of water–ligand exchange processes, and the electronic stabilizing factors thoroughly investigated by means of 1‐electron and 2‐electron density properties. Hexacoordinated complexes formed between iron cations and glycine molecules acting as monodentate or bidentate ligands have been chosen as targets for the current study. Results agree with experimental findings, and complexes formed with bidentate ligands are found to be more stable than those formed with monodentate ones. The larger the number of the coordinated glycine molecules the more stable is the complex. Fe(III) complexes are more stable than Fe(II) ones, but differences are small and the Fe3+/Fe2+ exchange process appears to be energetically feasible for these complexes. Formation of the second glycine–iron interaction involving the amino nitrogen in the bidentate ligands is enthalpycally unfavorable but takes place due to the large entropy rise of the process. The larger stability of Fe(III) complexes is due however to the balance between energetic and solvation terms, which is favorable to these complexes. Electron density properties account satisfactorily for the electronic energy changes along the complex formation in terms of ligand–metal electron transfer and covalent bond orders. © 2010 Wiley Periodicals, Inc. J Comput Chem 2010  相似文献   

6.
A detailed study of the thermal decomposition of the zwitterionic, ring-borylated ansa-chromocene hydrido carbonyl complex [Cr(CO)H{Me(4)C(2)(C(5)H(4))[C(5)H(3)B(C(6)F(5))(3)]}] (2) is described. This complex is formed in the reaction between [Cr(CO){Me(4)C(2)(C(5)H(4))(2)}] (1) and B(C(6)F(5))(3) in toluene at -78 degrees C. Above -25 degrees C, 2 decomposes to a 50:50 mixture of the low-spin, 17e Cr(III) complexes [Cr(CO){Me(4)C(2)(C(5)H(4))[C(5)H(3)B(C(6)F(5))(3)]}] (3b) and [Cr(CO){Me(4)C(2)(C(5)H(4))(2)}][HB(C(6)F(5))(3)] (4). Carbon monoxide elimination from 3 b generates high-spin, 15 e [Cr{Me(4)C(2)(C(5)H(4))[C(5)H(3)B(C(6)F(5))(3)]}] (3a), which coordinates two other electron-donating ligands, such as xylyl isocyanide, PMe3, and PPh(2)Me to form the low-spin, 17 e electron complexes 3c, 3d, and 3e, respectively. High-spin, 15 e [Cr{Me(4)C(2)(C(5)H(4))(2)}][HB(C(6)F(5))(3)] (5) is generated by heating 3 b in toluene at 100 degrees C and periodically removing the evolved CO. Efforts to isolate more than a few X-ray quality crystals of 5 were thwarted by its tendency to form an insoluble precipitate (6) with the same molecular formula. Heating the solution of 5 at 120 degrees C results in its partial conversion (ca. 28 %) to 3a, thereby allowing the formation of 3a in yields as high as 74 % from the reaction between 1 and B(C(6)F(5))(3). The X-ray crystal structures of 3 b-e and 5 are described. Cyclic voltammetry measurements on 3 a-e reveal a dramatic reduction in the redox potentials of the complexes relative to their non-borylated analogues. DFT calculations show that this is due primarily to electrostatic stabilization of the oxidized species by the negatively charged borylate group. EPR and 19F NMR spectroscopy allow 3a to be distinguished from its Lewis base adducts 3 b-e and reveal the relative affinities of different Lewis bases for the chromium.  相似文献   

7.
A new thiosemicarbazide derivative ligand (HDCTS) was prepared from the reaction between 2,4‐dinitrophenylhydrazine and 4‐chlorophenyl isothiocyanate. Co(II) and Cu(II) complexes were synthesized from HDCTS derivative by electrochemical method to reach preferable yield in a safe environment. The new complexes as well as the original ligand were fully characterized to establish their chemical formulae. The spectral (infrared, Raman, mass, and ultraviolet–visible), analytical (elemental, thermogravimetric analysis [TGA], and cyclic voltammetry), and conformational techniques were implemented for characterization. According to spectral data and magnetic moments, the octahedral arrangement was proposed around metals through mono‐negative bidentate mode of bonding. TGA discriminates and quantitatively evaluates the presence of water molecules within two complexes. Electrochemical study was interested for all new compounds and suggests the electrode couples to be close for quasi‐reversible behavior. Elaborated conformational study was displayed to extract significant characteristics, which assert firstly on the mode of bonding inside the complexes. The perfect distribution of NH and CS groups inside the optimized structures facilitates their coordination as spectrally proposed. Crystal explorer program was used to investigate the degree of contact between molecules inside crystal packing systems. Effective contribution in surface contact feature was noticed from O and Cl atoms. A certified in silico study concerning the docking feature of new compounds against effective proteins in allergy and inflammation diseases was done. According to data exported, a promising anti‐allergic or anti‐inflammatory efficiency is expected strongly from Cu(II)–DCTS complex.  相似文献   

8.
The bonding character, electron delocalization, and aromaticity of the cyclo[18]carbon (C18) precursors, C18-(CO)n (n=6, 4, and 2), have been studied by combining quantum chemical calculations and various electronic wavefunction analyses with different physical bases. It was found that C18-(CO)n (n=6, 4, and 2) molecules exhibit alternating long and short C−C bonds, and have out-of-plane and in-plane dual π systems (πout and πin) perpendicular to each other, which are consistent with the relevant characteristics of C18. However, the presence of carbonyl (-CO) groups significantly reduced the global electron conjugation of C18-(CO)n (n=6, 4, and 2) compared to C18. Specifically, the -CO group largely breaks the extensive delocalization of πin system, and the πout system is also affected by it but to a much lesser extent; as a consequence, C18-(CO)n (n=6, 4, and 2) with larger n shows weaker overall aromaticity. Mostly because of the decreased but still apparent πout electron delocalization in the C18-(CO)n (n=6, 4, and 2), a notable diatropic induced ring current under the action of external magnetic field is observed, demonstrating the clear aromatic characteristic in the molecules. The correlation between C18-(CO)n (n=6, 4, and 2) and C18 in terms of the gradual elimination of -CO from the precursors showed that the direct elimination of two CO molecules in C18-(CO)n (n=6, 4, and 2) has a synergistic mechanism, but it is kinetically infeasible under normal conditions due to the high energy barrier.  相似文献   

9.
《印度化学会志》2022,99(11):100735
In this present study, we investigated pharmaceutically active of 3-Bromo-4-chlorobenzophenone. Structural, electronic properties (HOMO-LUMO, MEP) are investigated using DFT tool. Vibrational spectral analysis for FT-IR and FT-Raman are made of headline molecule. Electronic transition properties are discussed with the help of UV–Vis spectral analysis. Biologically active sites are found from MEP analysis. Electron delocalization properties are studied explored from HOMO-LUMO band gap energy. Moreover, intra molecular interactions are explained from NBO method. Molecular docking studies are performed to find the interactions various pathologies. The topological properties of the electron density have been analyzed.  相似文献   

10.
The recent discovery of the all‐boron fullerenes or borospherenes, D2d B40?/0, paves the way for borospherene chemistry. Here we report a density functional theory study on the viability of metalloborospherenes: endohedral M@B40 (M=Ca, Sr) and exohedral M&B40 (M=Be, Mg). Extensive global structural searches indicate that Ca@B40 ( 1 , C2v, 1A1) and Sr@B40 ( 3 , D2d, 1A1) possess almost perfect endohedral borospherene structures with a metal atom at the center, while Be&B40 ( 5 , Cs, 1A′) and Mg&B40 ( 7 , Cs, 1A′) favor exohedral borospherene geometries with a η7‐M atom face‐capping a heptagon on the waist. Metalloborospherenes provide indirect evidence for the robustness of the borospherene structural motif. The metalloborospherenes are characterized as charge‐transfer complexes (M2+B402?), where an alkaline earth metal atom donates two electrons to the B40 cage. The high stability of endohedral Ca@B40 ( 1 ) and Sr@B40 ( 3 ) is due to the match in size between the host cage and the dopant. Bonding analyses indicate that all 122 valence electrons in the systems are delocalized as σ or π bonds, being distributed evenly on the cage surface, akin to the D2d B40 borospherene.  相似文献   

11.
Reactions of laser-ablated lanthanum atoms with CO molecules in solid argon have been studied. The neutral lanthanum monocarbonyl (LaCO), produced upon sample deposition at 7 K, exhibits a C-O stretching frequency of 1772.7 cm(-1); to the best of our knowledge this is the lowest yet observed for a terminal CO in a neutral metal-carbonyl molecule (MCO, M = metal atom), implying anomalously enhanced metal-to-CO back-bonding. The infrared (IR) absorption band at 1145.9 cm(-1) is assigned to the C-O stretching mode of the side-on-bonding CO in the La2[eta2(mu2-C,O)] molecule. This CO-activated molecule undergoes an UV/Vis-photoinduced rearrangement to the CO-dissociated molecule, c-La2(mu-C)(mu-O). Density functional theory (DFT) calculations have been performed on these molecules, the results of which lend strong support to the experimental assignments of the IR spectra. LaCO is predicted to have a quartet ground state, corresponding to a linear geometry. Its formation involves La 6s-->4f promotion, which increases the strength of La-CO bonding by decreasing the sigma repulsion and, remarkably, by increasing the La 5d and 4f-->CO 2pi back-bonding. The observations schematically depict the whole process, starting with the interaction of CO with metal and ending with CO dissociation by the lanthanum dimer.  相似文献   

12.
The Density functional theory has been applied to characterize the structural features of Mo(1,2)-NH(3),-C(2)H(4), and -C(2)H(2) compounds. Coordination modes, geometrical structures, and binding energies have been calculated for several spin multiplets. It has been shown that in contrast to the conserved spin cases (Mo(1,2)-NH(3)), the interaction between Mo (or Mo(2)) and C(2)H(4) (or C(2)H(2)) are the low-spin (Mo-C(2)H(4) and -C(2)H(2)) and high-spin (Mo(2)-C(2)H(4) and -C(2)H(2)) complexes. In the ground state of Mo(1,2)-C(2)H(4) and -C(2)H(2), the metal-center always reacts with the C-C center. The spontaneous formation of the global minima is found to be possible due to the crossing between the potential energy surfaces (ground and excited states with respect to the metallic center). The bonding characterization has been performed using the topological analysis of the Electron Localization Function. It has been shown that the most stable electronic structure for a pi-acceptor ligand correlates with a maximum charge transfer from the metal center to the C-C bond of the unsaturated hydrocarbons, resulting in the formation of two new basins located on the carbon atoms (away from hydrogen atoms) and the reduction of the number of attractors of the C-C basin. The interaction between Mo(1,2) and C(2)H(4) (or C(2)H(2)) should be considered as a chemical reaction, which causes the multiplicity change. Contrarily, there is no charge transfer between Mo(1,2) and NH(3), and the partners are bound by an electrostatic interaction.  相似文献   

13.
14.
Detailed ab initio studies on the electronic structure and optical properties of the heavy-metal azides have been performed using density functional theory within the generalized gradient approximation. An analysis of band structure, density of states, charge transfer, and bond order shows that the heavy-metal azides are ionic compounds but have covalent character. The valence bands of AgN3 and CuN3 are strongly dominated by Ag- and Cu-d, respectively, but that of TlN3 arises from the contributions of Tl-s and terminal N-p and not from Tl-d. The real and imaginary parts of the dielectric function, adsorption coefficient, and electron energy-loss spectra are calculated and compared with available experimental data.  相似文献   

15.
New cobalt complexes, Co1 and Co2 , were synthesized starting from acetylacetone-S-methylthiosemicarbazone. The square planar cobalt(II) and octahedral cobalt(III) complexes were characterized by FT-IR, UV–visible, 1H NMR, and X-ray diffraction spectroscopies and mass spectrometry. Frontier orbitals of the complexes were theoretically obtained to better understand the complex structures and intermolecular interactions. The electrochemical behaviors of Co1 and Co2 were investigated and the results were evaluated by comparing with each other and with similar published compounds to determine their possible usage in various electrochemical technologies, such as energy storage devices, electrocatalysts, and electrosensors. Metal-based oxidation at around 0 V and metal-based reduction at around −1.0 V indicated that these complexes are valuable for the proposed applications. By determining the trolox equivalent antioxidant capacity and the radical scavenging activity of the cobalt complexes, the compatibility between the antioxidant qualification, redox, and theoretical calculation results was discussed.  相似文献   

16.
Nitrogen-rich compounds involving the cyclo-pentazole anion (cyclo-N5) have attracted extensive attention due to higher energy release and environmental friendliness than traditional high energy density materials (HEDMs). However, the synthesis of stable HEDMs with cyclo-N5 is still a challenge. In this study, the effect of nine solvents on the geometrical and electronic structures and solvation energies of Zn(N5)2, one of the recently synthesized nitrogen-rich compounds, was studied using the density functional theory and the polarized continuum model. The results indicated an increase in the stability of Zn(N5)2 in the solution phase compared to the vacuum phase, and the stability of Zn(N5)2 increases with increasing dielectric constants. The energy gap of frontier molecular orbitals and the absolute value of total energy in water are the largest, revealing that Zn(N5)2 is more stable in water than in other solvents. To understand the stabilization mechanism of Zn(N5)2 by water, further studies were performed with the natural bond orbital (NBO) analysis and the quantum theory of atoms in molecules (QTAIM) analysis using the explicit solvent model. The charge transfer and the hydrogen bonds are observed between Zn(N5)2 and water, which are beneficial to improvement of the stability of Zn(N5)2. This may indicate the solvents that have strong interactions with the cyclo-N5 candidate may improve the possibility of success of synthesis.  相似文献   

17.
18.
In the present work, the formation of the four-membered cyclic nitronates and the retro (3 + 2) cycloaddition (retro-32CA) reaction of the 4H-[1,2]oxazete 2-oxide were studied using the density functional theory method at the MPWB1K/6-311G(d,p) theoretical level. The electronic structure of 3-tert-butyl-4,4-dimethyl-1,2-dinitro-pent-2-ene was known through electron localization function analysis, natural population analysis, and molecular electrostatic potential analysis. The formation of 4,4-di-tert-butyl-3-nitromethyl-4H-[1,2]oxazete 2-oxide proceeds through a one-step mechanism. The mechanism of the retro-32CA leading to di-tert-butyl ketone and nitrile oxide derivative should be described as an asynchronous two-stage one-step process. The bonding evolution theory study was carried out to clarify the mechanisms of the formation of 4H-[1,2]oxazete 2-oxide and their retro-32CA.  相似文献   

19.
通过定域密度矩阵方法和含时密度泛函方法研究了六元扩展卟啉及其Zn,Cd和Hg单金属配合物的光电性质.通过计算得到扩展卟啉HP同金属Zn2+,Cd2+和Hg2+发生配位时,分子趋于平面化.配合物在Q带有弱得吸收峰,它们随着中心金属的原子序数的增加产生了红移.在B带有强吸收峰,其特征峰主要来自于中心金属离子的d轨道和同金属配位的C原子所处的吡咯环以及吡咯环两侧的meso-C原子上的苯基的参与.对于扩展卟啉极其配合物,定域密度矩阵方法也可以很好的预测光谱和电子跃迁性质.  相似文献   

20.
The trinuclear ferrocenophane [{Fe(eta(5)-C(5)H(4))(3)}(2)Ga(2)] (3) featuring two sp(2)-hybridized gallium atoms in bridging positions between three ferrocene-1,1'-diyl units represents a novel type of ferrocene derivative. Compound 3 is obtained by thermal treatment of 1,1'-bis(dimethylgallyl)ferrocene (1) in nondonor solvents or in diethyl ether as solvent and subsequent thermal decomplexation. The [1.1]ferrocenophane [{Fe(eta(5)-C(5)H(4))(2)}(2){GaMe}(2)] (2) is an intermediate in the formation of 3. The reaction of 3 with an excess of trimethylgallium leads back to 1 and proves the reversibility of the multistep reaction sequence. Theoretical calculations reveal a carousel-type D(3h) structure for 3. The compound can best be described as being composed of three only weakly interacting ferrocenediyl units covalently connected by gallium atoms without any pi-bond contribution in the Ga--C bonds. Owing to steric constraints 3 cannot be reduced to the dianion 3(2-), which would feature a Ga--Ga bond. Compound 3 represents a stereochemically rigid difunctional Lewis acid allowing the formation of the adducts 3 a-3 d possessing linear donor-aceptor-aceptor-donor arrangements. Crystal structure data for 3 a-3 d show a symmetry-reduced chiral ferrocenophane core (D(3h)-->D(3)). A polymeric rodlike structure is observed for 3 b and 3 d caused by pi-stacking effects (3 b) or by a difunctional donor-acceptor interaction (3 d). In solution, the chirality of the adducts is lost by rapid interconversion of the enantiomers. A cyclic voltammogram of 3 b in pyridine reveals three quasi-reversible oxidation steps at -356, -154, and 8 mV, indicating only weak electron delocalization in the cationic species. The redox potentials of the pyridine adduct 3 b are compared with those of other pyridine-stabilized gallyl-sustituted ferrocene derivatives and with ferrocene itself.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号