首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
First principles study of structural, elastic, electronic and optical properties of the cubic perovskite-type BaHfO3 has been reported using the pseudo-potential plane wave method within the local density approximation. The calculated equilibrium lattice is in a reasonable agreement with the available experimental data. The elastic constants and their pressure dependence are calculated using the static finite strain technique. A linear pressure dependence of the elastic stiffnesses is found. Band structures show that BaHfO3 is a direct band gap between the occupied O 2p and unoccupied Hf d states. The variation of the gap versus pressure is well fitted to a quadratic function. Furthermore, in order to understand the optical properties of BaHfO3, the dielectric function, absorption coefficient, optical reflectivity, refractive index, extinction coefficient, and electron energy loss are calculated for radiation up to 30 eV. We have found that O 2p states and Hf 5d states play a major role in the optical transitions as initial and final states, respectively. This is the first quantitative theoretical prediction of the elastic, electronic and optical properties of BaHfO3 compound, and it still awaits experimental confirmation.  相似文献   

2.
The structural parameters, elastic, electronic, and optical properties of hexagonal BiAlO3 were investigated by the density functional theory. The calculated structural parameters are in good agreement with previous calculation and experimental data. The structural stability of BiAlO3 has been confirmed by calculation of the elastic constants. The energy band structure, density of states, and Mulliken charge populations were obtained. BiAlO3 presents an indirect band gap of 3.28 eV. Furthermore, the optical properties were calculated and analyzed. It is shown that BiAlO3 is a promising dielectric material.  相似文献   

3.
The electronic structure and the optical properties of In6S7 crystal are calculated by the first-principles full-potential linearized augmented plane wave method (FP-LAPW) using density functional theory (DFT) in its generalized gradient approximation (GGA). The calculated band structure shows that the In6S7 is a semiconductor with a direct band gap in good agreement with experimental studies. Furthermore, the dielectric tensor and the optical properties, such as absorption coefficient, refractive index, extinction coefficient, energy-loss spectrum and reflectivity, are derived and analyzed in the study.  相似文献   

4.
The magnetic properties, electronic structure, and optical properties of the filled skutterudite BaFe4Sb12 are calculated by the first-principles full-potential linearized augmented plane wave (FPLAPW) plus local orbital method. It is found that the local spin density approximation (LSDA) method appears more accurate than the generalized gradient approximation (GGA) method in calculating the electronic structures and optical properties of this compound. Furthermore, our calculated lattice constant and spin magnetic moments with the LSDA method are in overall better agreement with experiment. In contrast with recent experiment, our calculations are in good agreement with experimental reflectivity spectra and optical conductivity spectrum.  相似文献   

5.
The density functional theory (DFT) calculations of structural, elastic, electronic and optical properties of the cubic antiperovskite AsNMg3 has been reported using the pseudo-potential plane wave method (PP-PW) within the generalized gradient approximation (GGA). The equilibrium lattice, bulk modulus and its pressure derivative have been determined. The elastic constants and their pressure dependence are calculated using the static finite strain technique. We derived the bulk and shear moduli, Young's modulus and Poisson's ratio for ideal polycrystalline AsNMg3 aggregate. We estimated the Debye temperature of AsNMg3 from the average sound velocity. This is the first quantitative theoretical prediction of the elastic properties of AsNMg3 compound, and it still awaits experimental confirmation. Band structure, density of states and pressure coefficients of energy gaps are also given. The fundamental band gap (Γ-Γ) initially increases up to 4 GPa and then decreases as a function of pressure. Furthermore, the dielectric function, optical reflectivity, refractive index, extinction coefficient, and electron energy loss are calculated for radiation up to 30 eV. The all results are compared with the available theoretical and experimental data.  相似文献   

6.
The electronic-energy band structure, site and angular momentum decomposed density of states (DOS) and charge-density contours of perovskite CaTiO 3 are calculated by the first principles tight-binding linear muffin-tin orbitals method with atomic sphere approximation using density functional theory in its local density approximation. The calculated band structure shows an indirect (R-Γ) band gap of 1.5 eV. The total DOS as well as the partial density of states (PDOS) are compared with the experimental photoemission spectra. The calculated DOS are in reasonable agreement with the experimental energy spectra and the features in the spectra are interpreted by a comparison of the spectra with the PDOS. The origin of the various experimentally observed bands have been explained. From the DOS analysis, as well as charge-density studies, we conclude that the bonding between Ca and TiO 3 is mainly ionic and that the TiO 3 entities bond covalently. Using the projected DOS and band structure we have analyzed the interband contribution to the optical properties of CaTiO 3 . The real and imaginary parts of the dielectric function and hence the optical constants such as refractive index and extinction coefficient are calculated. The calculated spectra are compared with the experimental results for CaTiO 3 and are found to be in good agreement with the experimental results. The effective number of electrons per unit cell participating in the interband transitions are calculated. The role of band structure calculation as regards the optical properties of CaTiO 3 is discussed. Received 1 February 2000 and Received in final form 21 July 2000  相似文献   

7.
A theoretical study of structural, electronic and optical properties of cubic BaTiO3 and BaZrO3 perovskites is presented, using the full-potential linear augmented plane wave (FP-LAPW) method as implemented in the WIEN2K code. In this approach the local density approximation (LDA) is used for the exchange-correlation (XC) potential. Results are given for lattice constant, bulk modulus, its pressure derivative, band structure, density of states, pressure coefficients of energy gaps and refractive indices. The results are compared with previous calculations and experimental data.  相似文献   

8.
Using first-principles density functional calculations, the effect of high pressures, up to 40 GPa, on the structural and elastic properties of ANCa3, with A = P, As, Sb, and Bi, were studied by means of the pseudo-potential plane-waves method. Calculations were performed within the local density approximation and the generalized gradient approximation for exchange-correlation effects. The lattice constants are in good agreement with the available results. The elastic constants and their pressure dependence are calculated using the static finite strain technique. We derived the bulk and shear moduli, Young's modulus, Poisson's ratio and Lamé's constants for ideal polycrystalline ANCa3 aggregates. By analysing the ratio between the bulk and shear moduli, we conclude that ANCa3 compounds are brittle in nature. We estimated the Debye temperature of ANCa3 from the average sound velocity. This is the first quantitative theoretical prediction of the elastic properties of PNCa3, AsNCa3, SbNCa3, and BiNCa3 compounds, and it still awaits experimental confirmation.  相似文献   

9.
The structural, optical and elastic properties of cubic HfO2 were studied using the plane-wave ultrasoft pseudopotential technique based on the first-principles density-functional theory (DFT). The ground-state properties such as lattice parameter and bulk modulus were calculated and these results are in favorable agreement with the previous work. The complex dielectric function, refractive index, extinction coefficient, complex conductivity function, energy-loss spectrum, absorption coefficient and optical reflectivity are calculated and the peak position distributions of imaginary parts of the complex dielectric function have been explained. The calculated elastic properties are consistent with other calculated results.  相似文献   

10.
We have performed relativistic first-principles full-potential linearized augmented plane wave (FLAPW) calculation for rare earth palladium sulfide EuPd3S4 in the ferromagnetic and antiferromagnetic states. The density of 4f electrons of Eu is taken from a local-spin-density approximation self-interaction correction (LSDA-SIC) atomic calculation. EuPd3S4 is found to exhibit antiferromagnetic ordering in its ground state. The charge, orbital, magnetic moment and spin ordering are explained with the electronic structure, the orbital-projected density of states and the total energy study. EuPd3S4 is found to be stable in the body-centered Type-I antiferromagnetic state, in agreement with experimental results. Different Eu states are found in antiferromagnetic ordering. The magnetic moments of different states obtained through spin-polarized calculation are also in good agreement with experimental results. The phenomena observed are explained by the orbital hybridization of Eu and Pd ions as compared with the free ions.  相似文献   

11.
We present structural, elastic, electronic and optical properties of the perovskites SrMO3 (M=Ti, and Sn) for different pressure. The computational method is based on the pseudo-potential plane wave method (PP-PW). The exchange-correlation energy is described in the generalized gradient approximation (GGA). The calculated equilibrium lattice parameters are in reasonable agreement with the available experimental data. This work shows that the perovskites SrTiO3, and SrSnO3 are mechanically stable and present an indirect band gaps at the Fermi level. Applied pressure does not change the shape of the total valence electronic charge density and most of the electronic charge density is shifted toward O atom. Furthermore, in order to understand the optical properties of SrMO3, the dielectric function, absorption coefficient, optical reflectivity, refractive index, extinction coefficient and electron energy-loss are calculated for radiation up to 80 eV. The enhancement of pressure decreases the dielectric function and refractive indices of SrTiO3 and SrSnO3.  相似文献   

12.
The electronic and optical properties of Nb doped SrTiO3 are studied by ab initio linear muffin-tin orbital method in the atomic sphere approximation. The equilibrium lattice constants of SrTi1−xNbxO3 with x=0.0, 0.25 and 0.5 are found by minimization of the total energy curves. The computated lattice constants are in good agreement with experimental data. Our electronic band calculation shows that the Fermi level of SrTi1−xNbxO3 with x≥0.125 moves into the conduction bands and the system shows metallic behavior. The numerical results indicate that the Nb impurity atoms would lead to the distortion of the band edges. The complex dielectric function of SrTiO3 and Nb doped SrTiO3 are calculated using the random-phase approximation. The doping effect on the optical properties of SrTi1−xNbxO3 is discussed.  相似文献   

13.
蔡鲁刚  刘发民  钟文武 《中国物理 B》2010,19(9):97101-097101
This paper calculates the structural parameters, electronic and optical properties of orthorhombic distorted perovskite-type TbMnO3 by first principles using density functional theory within the generalised gradient approximation. The calculated equilibrium lattice constants are in a reasonable agreement with theoretical and experimental data. The energy band structure, density of states and partial density of states of elements are obtained. Band structures show that TbMnO3 is an indirect band gap between the O 2p states and Mn 3d states, and the band gap is of 0.48 eV agreeing with experimental result. Furthermore, the optical properties, including the dielectric function, absorption coefficient, optical reflectivity, refractive index and energy loss spectrum are calculated and analysed, showing that the TbMnO3 is a promising dielectric material.  相似文献   

14.
The electronic, structural properties and optical properties of the rutile TiO2 have been reported using the full potential linearized augmented plane wave (FP-LAPW) method as implemented in the WIEN2K code. We employed the generalized gradient approximation (GGA), which is based on exchange-correlation energy optimization to calculate the total energy. Also we have used the Engel-Vosko GGA formalism, which optimizes the corresponding potential for band structure calculations. Our results including lattice parameter, bulk modulus, density of states, the reflectivity spectra, the refractive index and band gap are compared with the experimental data. We present calculations of the frequency-dependent complex dielectric function ε(ω) and its zero-frequency limit ε1(0).  相似文献   

15.
Tin oxide (SnO2) is an important oxide for efficient dielectrics, catalysis, sensor devices, electrodes and transparent conducting coating oxide technologies. SnO2 thin film is widely used in glass applications due to its low infra-red heat emissivity. In this work, the SnO2 electronic band-edge structure and optical properties are studied employing a first-principle and fully relativistic full-potential linearized augmented plane wave (FPLAPW) method within the local density approximation (LDA). The optical band-edge absorption α(ω) of intrinsic SnO2 is investigated experimentally by transmission spectroscopy measurements and their roughness in the light of the atomic force microscopy (AFM) measurements. The sample films were prepared by spray pyrolysis deposition method onto glass substrate considering different thickness layers. We found for SnO2 qualitatively good agreement of the calculated optical band-gap energy as well as the optical absorption with the experimental results.  相似文献   

16.
The electronic structure, the metallic and magnetic properties of metal phosphonate Co[(CH3PO3)(H2O)] have been studied by first-principles calculations, which were based on the density-functional theory (DFT) and the full potential linearized augmented plane wave (FPLAPW) method. The total energy, the spin magnetic moments and the density of the states (DOS) were all calculated. The calculations reveal that the compound Co[(CH3PO3)(H2O)] has a stable metallic antiferromagnetic (AFM) ground state and a half-metallic ferromagnetic (FM) metastable state. Based on the spin distribution obtained from calculations, it is found that the spin magnetic moment of the compound is mainly from the Co2+, with some small contributions from the oxygen, carbon and phosphorus atoms, and the spin magnetic moment per molecule is 5.000μB, which is in good agreement with the experimental results.  相似文献   

17.
We report results of first-principles calculations for the electronic and optical properties under pressure effect of Li2O, Na2O, Ki2O and Rb2O compounds in the cubic antifluorite structure, using a full relativistic version of the full-potential augmented plane-wave plus local orbitals (FP-APW+lo) method based on density functional theory, within the local density approximation (LDA) and the generalized gradient approximation (GGA). Moreover, the alternative form of GGA proposed by Engel and Vosko (GGA-EV) is also used for band structure calculations. The calculated equilibrium lattices and bulk moduli are in good agreement with the available data. Band structure, density of states, and pressure coefficients of the fundamental energy gap are given. The critical point structure of the frequency dependent complex dielectric function is also calculated and analyzed to identify the optical transitions. The pressure dependence of the static optical dielectric constant is also investigated.  相似文献   

18.
By using first‐principles calculations, the authors investigate the structural, mechanical, and electronic properties of experimentally synthesized Os0.5W0.5B2. The calculated structural parameters and elastic properties are in good agreement with the experimental results. In addition, two new 5d transition‐metal diborides (Re0.5W0.5B2 and Os0.5Re0.5B2) are predicted to have promising large shear moduli. The latter mainly come from the non‐uniform distribution of valence charge density, which raises the value of the shear moduli. We discuss potentially high hardness in these materials. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
The ethylene/1-butene copolymerization using constrained geometry catalyst CpSiH2-NH-TiCl2 (CGC) was investigated by the density functional theory and molecular dynamics. Structures and energetics of reactants, π-complexes, transition states, and products during insertion of ethylene and 1-butene monomers into the catalytic reactive site of the CGC were investigated by the density functional theory (DFT) using the software Dmol3, while dynamics of atoms during copolymerization process was investigated by classical molecular dynamics (MD) using the New-Ryudo-CR program. The calculated results were compared with the available experimental and theoretical ones. It was found that the ethylene insertion into Ti-Me active species is energetically more favorable than the butene one and the 2,1-butene insertion is more favorable than 1,2-butene one. Once the initial ethylene insertion has taken place, the further ethylene insertion occurring with a less energy barrier, in good agreement with experimental findings.  相似文献   

20.
Using ab initio calculations, we have studied the structural, electronic and elastic properties of M2SC, with M = Ti, Zr and Hf. Geometrical optimization of the unit cell are in good agreement with the available experimental data. The band structures show that all three materials are conducting. The analysis of the site and momentum projected densities shows that the bonding is achieved through a hybridization of M-atom d states with S and C-atom p states. The Md-Sp bonds are lower in energy and are stiffer than Md-Cp bonds. The elastic constants are calculated using the static finite strain technique. We derived the bulk and shear moduli, Young's moduli and Poisson's ratio for ideal polycrystalline M2SC aggregates. We estimated the Debye temperature of M2SC from the average sound velocity. This is a quantitative theoretical prediction of the elastic properties of Ti2SC, Zr2SC, and Hf2SC compounds, and it still awaits experimental confirmation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号