首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In this study, Cd(OH)2 nanowires have been synthesized by using arc discharge method in de-ionized water. The morphology and properties of the Cd(OH)2 nanowires were characterized by X-ray diffraction analysis (XRD), scanning electron microscopy, transmission electron microscopy (TEM), and UV–Vis spectroscopy. TEM observations revealed that Cd(OH)2 nanowires were abundant morphology in synthesized nanostructures, and the diameter of the Cd(OH)2 nanowires ranges from 5 to 40 nm with several micrometers of length. In addition, the width of nanowires is not uniform and varies throughout the nanowire. XRD analysis revealed that the Cd(OH)2 nanowires grow along [001] direction. Furthermore, hexagonal- and irregular-shaped Cd(OH)2 nanoplates were synthesized during arc discharge. It was obtained that required arc current is 50 A for the effective and large scale production of Cd(OH)2 nanowires. Furthermore, the optical properties of the nanowires have been characterized by UV–Vis spectra. By the means of the optical studies, the direct band gap of Cd(OH)2 nanowires was found to be 4.0 eV with strong quantum size effect. It is also shown that a simple and cheap method which does not require relatively expensive vacuum and laser equipment stipulates an economical alternative for the synthesis of Cd(OH)2 nanowires.  相似文献   

2.
A wealth of superfine polycrystalline cuprous oxide (Cu2O) nanowires have been synthesized with hydrazine hydrated (N2H4·H2O), act as the reducing agent, and Cu(OH)2 nanowires, act as a soft template and surfactant, at room temperature. Two methods were employed for the synthesis of these nanowires, i.e. with and without capping agent (polyethylene glycol Mw 8000). Techniques of powder X-ray diffraction (XRD), transmission electron microscopy (TEM), selected area electron diffraction (SAED) pattern, electron diffraction X-ray (EDX) spectroscopy, and UV-visible (UV-vis) spectroscopy have been used to characterize the morphology, structure, crystallinity, purity, and composition of nanowires. The average diameters of Cu2O nanowires, prepared with and without capping agent, were observed to be 8-10 and 12-15 nm and lengths of several microns, respectively. It is found that capping agent (PEG) confines the dimensions of synthesized nanowires. In addition, the observed optical band gap of products show blue-shift effect compared to the bulk Cu2O (Eg=2.17 eV), which ascribe it as a promising material for the conversion between solar energy and electrical or chemical energy.  相似文献   

3.
In-doped Ga2O3 zigzag-shaped nanowires and undoped Ga2O3 nanowires have been synthesized on Si substrate by thermal evaporation of mixed powders of Ga, In2O3 and graphite at 1000 °C without using any catalyst via a vapor-solid growth mechanism. The morphologies and microstructures of the products were characterized by field-emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDS) and photoluminescence spectroscopy (PL). The nanowires range from 100 nm to several hundreds of nanometers in diameter and several tens of micrometers in length. A broad emission band from 400 to 700 nm is obtained in the PL spectrum of these nanowires at room temperature. There are two blue-emission peaks centering at 450 and 500 nm, which originate from the oxygen vacancies, gallium vacancies and gallium-oxygen vacancy pairs.  相似文献   

4.
SnO2 nanowires were synthesized using a direct gas reaction route and were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), selected-area electron diffraction (SAED), high-resolution transmission electron microscopy (HRTEM) and Raman-scattering spectroscopy. XRD, SEM, SAED and HRTEM indicated that the products were tetragonal SnO2 nanowires with diameters of 10–50 nm. The nanowires were single crystal and solid inside. Dendritic nanowires were observed for the first time. Three vibrational modes were observed in the Raman spectra of the samples. Received: 7 January 2002 / Accepted: 11 April 2002 / Published online: 19 July 2002  相似文献   

5.
CdSe thin films have been electrodeposited potentiostatically onto stainless-steel and fluorine-doped tin oxide-coated glass substrates from an aqueous acidic bath using cadmium acetate ((CH3COO)2Cd·2H2O) as a Cd ion source. Preparative parameters such as deposition potential, solution concentration, bath temperature, pH of the electrolytic bath and deposition time have been optimized by using photoelectrochemical (PEC) technique to obtain well adherent and uniform thin films. The electrodeposits were dark brown in colour. The films have been characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and optical absorption techniques. XRD studies reveal that films are polycrystalline, with hexagonal crystal structure. SEM shows that the films are compact, with spherical grains. Optical absorption studies reveal that the material exhibits a direct optical transition having band gap energy ∼1.72 eV. PEC study shows that the films are photoactive.  相似文献   

6.
Well-defined flower-like Cd(OH)2 microstructures have been successfully synthesized via a simple aqueous solution route, using CdCl2 and NaOH as the reactants, and triethanolamine (TEA) as the modifying agent. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and UV-vis spectrometer were used to characterize the products. SEM and TEM images illustrated that the flower-like Cd(OH)2 bundles consisted of hexagonal nanoplates with thickness of about 50 nm. The adsorption of TEA on (0 0 1) plane of the growing Cd(OH)2 crystal leads to the flower petals in appearance. Further experiments evidenced that the positively charged Cd(OH)2 could effectively adsorb or separate the negatively charged dye molecules.  相似文献   

7.
Ultralong mesoporous TiO2-B nanowires were synthesized via a hybrid hydrothermal-ion exchanging-thermal treatment using tetrabutyl titanate (TBOT) as a raw material. The phase transformations and porous structures of TiO2-B nanowires were characterized and studied by X-ray diffraction (XRD), transmission electron microscopy (TEM) and N2 adsorption-desorption measurement. Mesoporous TiO2-B nanowires showed a length of several micrometers and diameter of about 25 nm. The porous structures of obtained TiO2-B nanowires were demonstrated by BJH pore distribution measurement. The wirelike morphologies and porous structures of monodisperse nanowires calcined at 600 °C showed little change, which indicated that such nanowires possessed high thermal stability. The formation mechanism of TiO2-B nanowires with mesoporous structures were also discussed based on our experimental results.  相似文献   

8.
Zinc blende (ZB) CdSe hollow nanospheres were solvothermally synthesized from the reaction of Cd(NO3)2·4H2O with a homogeneously secondary Se source, which was first prepared by dissolving Se powder in the mixture of ethanol and oleic acid at 205 °C. As Se power directly reacted with Cd(NO3)2·4H2O in the above mixed solvents, wurtzite (W) CdSe solid nanoparticles were produced. Time-dependent experiments suggested that the formation of CdSe hollow nanospheres was attributed to an inside-out Ostwald ripening process. The influences of reaction time, temperature and ethanol/oleic acid volume ratio on the morphology, phase and size of the hollow nanospheres were also studied. Infrared (IR) spectroscopy investigations revealed that oleic acid with long alkene chains behaved as a reducing agent to reduce Se powder to Se2− in the synthesis. Photoluminescence (PL) measurements showed that the ZB CdSe hollow nanospheres presented an obvious blue-shifted emission by 42 nm, and the W CdSe solid nanoparticles exhibited a band gap emission of bulk counterpart.  相似文献   

9.
In this study, we demonstrate the large-scale synthesis of beta gallium oxide (β-Ga2O3) nanowires through microwave plasma chemical vapor deposition (MPCVD) of a Ga droplet in the H2O and Ar atmosphere at 600 W. Unlike the commonly used MPCVD method, the H2O, not mixture of gas, was employed to synthesize the nanowires. The ultra-long β-Ga2O3 nanowires with diameters of about 20-30 nm were several tens of micrometers long. The morphology and structure of products were analyzed by scanning electron microscopy (SEM), X-ray diffraction (XRD), transmission electron microscopy (TEM) and high-resolution transmission electron microscope (HRTEM). The growth of β-Ga2O3 nanowires was controlled by vapor-solid (VS) crystal growth mechanism.  相似文献   

10.
In this work, GaN nanowires were fabricated on Si substrates coated with NiCl2 thin films using chemical vapor deposition (CVD) method by evaporating Ga2O3 powder at 1100 °C in ammonia gas flow. X-ray diffraction (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microscope (HRTEM) and photoluminescence (PL) spectrum are used to characterize the samples. The results demonstrate that the nanowires are single-crystal GaN with hexagonal wurtzite structure. The growth mechanism of GaN nanowires is also discussed.  相似文献   

11.
Cadmium hydroxide (Cd(OH)2) and cadmium oxide (CdO) nano and micro crystals were synthesized in ethanol-water medium using cadmium foil both as a source and substrate under solvothermal condition. Different concentrations of ammonium hydroxide, hydrazine hydrate, sodium hydroxide and potassium hydroxide were added to study the structural and morphological variations in the products. Synthesis was carried out at different temperatures to study the growth stages of the nano/microstructures. The samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM). The as-prepared Cd(OH)2 products were transformed to CdO by thermal treatment in air. The possible growth mechanism for the formation of different morphologies at different basic medium has been proposed. The optical absorption measurement was carried out to determine the values of the band gap of CdO.  相似文献   

12.
In this study, beta-gallium oxide (β-Ga2O3) nanowires, nanobelts, nanosheets, and nanograsses were synthesized through microwave plasma of liquid phase gallium containing H2O in Ar atmosphere using silicon as the substrate. The nanowires with diameters of about 20-30 nm were several tens of microns long and the nanobelts with thickness of about 20-30 nm were tens to hundreds of microns long. The morphology and structure of products were analyzed by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM) and X-ray diffraction (XRD). These results showed that multiple nucleation and growth of β-Ga2O3 nanostructures could easily occur directly out of liquid gallium exposed to appropriate H2O and Ar in the gas phase. The growth process of β-Ga2O3 nanostructures may be dominated by VS (vapor-solid) mechanism.  相似文献   

13.
GaN nanowires and nanorods have been successfully synthesized on Si(1 1 1) substrates by magnetron sputtering through ammoniating Ga2O3/V films at 900 °C in a quartz tube. X-ray diffraction (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), and photoluminescence (PL) spectrum were carried out to characterize the structure, morphology, and photoluminescence properties of GaN sample. The results show that the GaN nanowires and nanorods with pure hexagonal wurtzite structure have good emission properties. The growth direction of nanostructures is perpendicular to the fringes of (1 0 1) plane. The growth mechanism is also briefly discussed.  相似文献   

14.
In this paper we reported a NH3·H2O-assisted solvothermal route for successful synthesis of cadmium hydroxyl chlorides (Cdx(OH)yClz) microstructures with different phases and shapes, employing 1D CdQCl (Q=quinoline) complex microwires as the precursor. Experiments contained two processes: firstly, CdQCl complex microwires with 500–600 nm in diameter and several hundreds of micrometers in length were prepared by the complexation between CdCl2·2.5H2O and quinoline at room temperature; then, CdQCl microwires were solvothermally treated at 150 °C for 10 h in the presences of different amounts of NH3·H2O to produce Cdx(OH)yClz microstructures with various phases and shapes. The as-obtained precursor and Cdx(OH)yClz microstructures were characterized by scanning electron microscopy, transmission electron microscopy, Infrared spectrometry and X-ray powder diffraction. Experiments showed that hexagonal Cd(OH)Cl was obtained from water–methanol system, while rhombohedral Cd4(OH)5Cl3 from methanol system. Also, it was found that the shapes of Cdx(OH)yClz could be tuned by the amounts of NH3·H2O. Furthermore, the UV diffuse reflection and photoluminescence spectra of the precursor and Cdx(OH)yClz were also investigated.  相似文献   

15.
In this work, we demonstrate a fast approach to grow SiO2 nanowires by rapid thermal annealing (RTA). The material characteristics of SiO2 nanowires are investigated by field emission scanning electron microscopy, high-resolution transmission electron microscopy (HRTEM), high-angle annular dark-field (HAADF) imaging, electron energy loss spectroscopy (EELS), and energy-filtered TEM (EFTEM). The HAADF images show that the wire tip is predominantly composed of Pt with brighter contrast, while the elemental mappings in EFTEM and EELS spectra reveal that the wire consists of Si and O elements. The SiO2 nanowires are amorphous with featureless contrast in HRTEM images after RTA at 900°C. Furthermore, the nanowire length and diameter are found to be dependent on the initial Pt film thickness. It is suggested that a high SiO2 growth rate of >1 μm/min can be achieved by RTA, showing a promising way to enable large-area fabrication of nanowires.  相似文献   

16.
Cd(OH)2 and CdO nano/micro crystals were synthesized in ethanol-water medium using cadmium foil as a source under solvothermal condition. The experimental parameters such as ratio of ethanol to water, concentration of NaOH and synthesis temperature all play important role in determining the size, shape and crystalline phase of the products. The products were characterized by X-ray diffraction and scanning electron microscopy. Nano/micro crystals of CdO were also achieved by thermal treatment of Cd(OH)2 crystals in air at different temperatures.  相似文献   

17.
In2O3 nanowires have been successfully fabricated on a large scale from indium particles by thermal evaporation at 1030 °C. The as-synthesized products were characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). SEM and TEM images show that these nanowires are uniform with diameters of about 60–120 nm and lengths of about 15–25 μm. XRD and selected-area electron diffraction analysis together indicate that these In2O3 nanowires crystallize in a cubic structure of the bixbyite Mn2O3 (I) type (also called the C-type rare-earth oxide structure). The growth mechanism of these nanowires is also discussed. Received: 29 June 2001 / Accepted: 28 September 2001 / Published online: 20 December 2001  相似文献   

18.
Perovskite strontium stannate (SrSnO3) nanorods were prepared by annealing the precursor SnSr(OH)6 nanorods at 600 °C for 3 h. The precursor nanorods were hydrothermally synthesized at 160 °C for 16 h using Sr(NO3)2 and SnCl4·5H2O as starting materials in the presence of surfactant cetyltrimethyl ammonium bromide (CTAB). As-prepared samples were characterized by X-ray diffraction (XRD), thermogravimetric-differential thermal analysis (TG-DTA), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and infrared ray spectroscopy (IR). The results show that the as-synthesized powders are made of SrSnO3 one-dimensional nanorods of about 0.2-1 μm length and 100-150 nm diameter. Possible formation mechanism of SrSnO3 with nanorod structure under certain conditions was preliminarily analyzed, in which it was thought that CTAB played an important role in the formation process of the nanorod structure. Electrochemical performance of the samples versus Li metal was also evaluated for possible use in lithium-ion batteries.  相似文献   

19.
Octahedral In2O3 crystals were synthesized by evaporation of a mixture of In2O3 and graphite in a horizontal double-tube system. By adjusting the experimental conditions, In2O3 nanowires and nanobelts were also obtained. The microstructures of the resultant In2O3 materials were characterized by scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), selected-area electron diffraction (SAED), X-ray diffraction. In addition, the growth mechanism of the octahedral In2O3 crystals was discussed in detail.  相似文献   

20.
Spinel CoFe2O4 nanowire arrays were synthesized in nanopores of anodic aluminum oxide (AAO) template using aqueous solution of cobalt and iron nitrates as precursor. The precursor was filled into the nanopores by vacuum impregnation. After heat treatment, it transformed to spinel CoFe2O4 nanowires. The structure, morphology and magnetic properties of the sample were studied by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and vibrating sample magnetometer (VSM). The results indicate that the nanowire arrays are compact. And the individual nanowires have a high aspect ratio, which are about 80 nm in diameter and 10 μm in length. The nanowires are polycrystalline spinel phase. Magnetic measurements indicate that the nanowire arrays are nearly magnetic isotropic. The reason is briefly discussed. Moreover, the temperature dependence of the coercive force of the nanowire arrays was studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号