首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
For the first time, a study of hyperfine interactions in metal grains extracted from ordinary chondrite Tsarev L5 was done using Mössbauer spectroscopy with high-velocity resolution. Three magnetic (sextets) and one paramagnetic (singlet) components were revealed in the Mössbauer spectrum of extracted metal. The evaluated values of the magnetic hyperfine field were 332.5, 335.4 and 347.2 kOe. On the basis of Mössbauer parameters and metallographic data, the magnetic components were related to the α-Fe(Ni, Co), α′-Fe(Ni, Co) and α2-Fe(Ni, Co) phases of Fe(Ni, Co) alloy, while the paramagnetic singlet was related to the γ-Fe(Ni, Co) phase.  相似文献   

2.
SrFe12−x(Sn0.5Zn0.5)xO19 thin films with x=0−5 were synthesized by a sol-gel method on thermally oxidized silicon wafer (Si/SiO2). The site preference and magnetic properties of Zn-Sn substituted strontium ferrite thin films were studied using 57Fe Mössbauer spectroscopy and magnetic measurements. Mössbauer spectra displayed that the Zn-Sn ions preferentially occupy the 2b and 4f2 sites. The preference for these sites is responsible for the anomalous increase in the magnetization at high Zn-Sn substitutions. X-ray diffraction (XRD) patterns and field emission scanning electron microscope (FE-SEM) micrographs demonstrated that single phase c-axis hexagonal ferrite films with rather narrow grain size distribution were obtained. Vibrating sample magnetometer (VSM) was employed to probe magnetic properties of samples. The maximum saturation of magnetization and coercivity at perpendicular direction were 265 emu/g and 6.3 kOe, respectively. It was found that the complex susceptibility has linear variation with static magnetic field.  相似文献   

3.
We report the structural and magnetic properties of as-deposited and thermally annealed FePt/C granular multilayer films. The as-deposited system exhibits a disordered fcc FePt phase with an average grain size of 3 nm. Thermal annealing at 650 °C results in partial L10 ordering and an associated grain growth to 7 nm. Mössbauer measurements show that there is no non-magnetic component present, suggesting that carbon resides only in the grain boundary region. The ferromagnetic grains are magnetically decoupled.  相似文献   

4.
Thermo-gravimetric, differential scanning calorimetry and comprehensive 57Fe Mössbauer spectroscopy studies of amorphous and crystalline ferromagnetic glass coated (Co0.2Fe0.8)72.5Si12.5B15 micro-wires have been recorded. The Curie temperature of the amorphous phase is TC(amorp) ∼730 K. The analysis of the Mössbauer spectra reveals that below 623 K the easy axis of the magnetization is axial-along the wires, and that a tangential or/and radial orientation occurs at higher temperatures. At 770 K, in the first 4 hours the Mössbauer spectrum exhibits a pure paramagnetic doublet. Crystallization and decomposition to predominantly α-Fe(Si) and Fe2B occurs either by raising the temperature above 835 K or isothermally in time at lower temperatures. Annealing for a day at 770 K, leads to crystallization. In the crystalline material the magnetic moments have a complete random orientation. After cooling back to ambient temperature, both α-Fe(Si) and Fe2B in the glass coated wire show pure axial magnetic orientation like in the original amorphous state. The observed spin reorientations are associated with changes in the stress induced by the glass coating.  相似文献   

5.
The xZnO-(1−x)α-Fe2O3 nanoparticles system has been obtained by mechanochemical activation for x=0.1, 0.3 and 0.5 and for ball milling times ranging from 2 to 24 h. Structural and morphological characteristics of the zinc-doped hematite system were investigated by X-ray diffraction (XRD) and Mössbauer spectroscopy. The Rietveld structure of the XRD spectra yielded the dependence of the particle size and lattice constant on the amount x of Zn substitutions and as function of the ball milling time. The x=0.1 XRD spectra are consistent with line broadening as Zn substitutes Fe in the hematite structure and the appearance of the zinc ferrite phase at milling times longer than 4 h. Similar results were obtained for x=0.3, while for x=0.5 the zinc ferrite phase occurred at 2 h and entirely dominated the spectrum at 24 h milling time. The Mössbauer spectra corresponding to x=0.1 exhibit line broadening as the ball milling time increases, in agreement with the model of local atomic environment. Because of this reason, the Mössbauer spectrum for 12 h of milling had to be fitted with two sextets. For x=0.3 and 12 milling hours, the Mössbauer spectrum reveals the occurrence of a quadrupole-split doublet, with the hyperfine parameters characteristic to zinc ferrite, ZnFe2O4. This doublet clearly dominates the Mössbauer spectrum for x=0.5 and 24 h of milling, demonstrating that the entire system of nanoparticles consists finally of zinc ferrite. As ZnO is not soluble in hematite in the bulk form, the present study clearly demonstrates that the solubility limits of an immiscible system can be extended beyond the limits in the solid state by mechanochemical activation. Moreover, this synthesis route allowed us to reach nanometric particle dimensions, which would make the materials very important for gas sensing applications.  相似文献   

6.
Fe-containing SiBEA zeolites were prepared by a two-step postsynthesis method: creation of vacant T-sites by dealumination of tetraethylammonium BEA zeolite with nitric acid and then impregnation of the resulting SiBEA zeolite with an aqueous solution of Fe(NO3)3. X-ray diffraction shows that iron is incorporated in SiBEA at lattice sites. The presence of Fe in its oxidation state +3 and at isolated tetrahedral sites for low metal content, was demonstrated by diffuse reflectance UV-vis, EPR and Mössbauer spectroscopy. For high iron content, diffuse reflectance UV-vis and Mössbauer spectra revealed the additional presence of extra-lattice FeOx oligomers and superparamagnetic Fe-oxyhydroxide. Mössbauer spectroscopy identified superparamagnetic Fe-oxyhydroxide as the main phase when basic conditions are used for the preparation.  相似文献   

7.
The Cr-substituted M-type barium hexaferrites, BaFe12−xCrxO19, with x=0.0–0.8x=0.00.8 have been successfully prepared by nitrate–citrate auto-combustion process using citric acid as a fuel/reductant and nitrates as oxidants. The resulting precursors were calcined at 1100 °C for 1 h and followed by sintering at 1200 °C for 12 h in oxygen atmosphere. The ferrites were systematically investigated by using powder X-ray diffractometer (XRD), magnetic hysteresis recorder, Mössbauer spectrometer, and scanning electron microscope (SEM). The XRD data show the formation of pure magnetoplumbite phase without any other impurity phases. Both a and c lattice parameters calculated by the Rietveld method systematically decrease with increasing Cr content. The effects of Cr3+ ions on the barium ferrites were reported and discussed in detail. The site preference of Cr3+ and magnetic properties of the ferrites have been studied using Mössbauer spectra and hystereses. The results show that the magnetic properties are closely related to the distributions of Cr3+ ions on the five crystallographic sites. The saturation magnetization systematically decreases, however, the coercivity increases with Cr concentration. The magnetization and Mössbauer results indicate that the Cr3+ ions preferentially occupy the 2a, 12k, and 4fVI sites. The average size of hexagonal platelets obtained by SEM photographs tends to decrease with respect to Cr content.  相似文献   

8.
Magnetite (Fe3O4) nanoparticles were successfully synthesized by a sol–gel method. The obtained nanoparticles were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), energy dispersive analysis by X-ray (EDAX), transmission electron microscopy (TEM), superconducting quantum interference device (SQUID) and Mössbauer spectrometry. XRD and Mössbauer measurements indicate that the obtained nanoparticles are single phase. TEM analysis shows the presence of spherical nanoparticles with homogeneous size distribution of about 8 nm. Room temperature ferromagnetics behavior was confirmed by SQUID measurements. The mechanism of nanoparticles formation and the comparison with recent results are discussed. Finally, the synthesized nanoparticles present a potential candidate for hyperthermia application given their saturation magnetization.  相似文献   

9.
A single phase manganese ferrite powder have been synthesized through the thermal decomposition reaction of MnC2O4·2H2O-FeC2O4·2H2O (1:2 mole ratio) mixture in air. DTA-TG, XRD, Mössbauer spectroscopy, FT-IR and SEM techniques were used to investigate the effect of calcination temperature on the mixture. Firing of the mixture in the range 300-500 °C produce ultra-fine particles of α-Fe2O3 having paramagnetic properties. XRD, Mössbauer spectroscopy as well as SEM experiments showed the progressive increase in the particle size of α-Fe2O3 up to 500 °C. DTA study reveals an exothermic phase transition at 550 °C attributed to the formation of a Fe2O3-Mn2O3 solid solution which persists to appear up to 1000 °C. At 1100 °C, the single phase MnFe2O4 with a cubic structure predominated. The Mössbauer effect spectrum of the produced ferrite exhibits normal Zeeman split sextets due to Fe3+ions at tetrahedral (A) and octahedral (B) sites. The obtained cation distribution from Mössbauer spectroscopy is (Fe0.92Mn0.08)[Fe1.08Mn0.92]O4.  相似文献   

10.
Synthesis of nanocomposites of iron oxide & chromium oxide (α-Fe2O3–Cr2O3) with different concentrations was carried out by a wet-chemical method and the structural, optical and hyperfine properties have been investigated. The prepared nanocomposites were characterized by powder X-ray diffractometry (PXRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), UV–VIS spectroscopy, Fourier transformed infrared (FTIR) spectroscopy and Mössbauer spectroscopy. XRD measurements confirmed the formation of pure phase composites having particle sizes in nanometer regime. The same has been corroborated by TEM micrographs, which revealed that the formation of monodispersed nanocomposites have the average particle size 44 nm. Mössbauer study of the samples showed the transition of iron oxide from anti-ferromagnetic state to paramagnetic state having a typical relaxation in the spectrum with increasing concentration of Cr2O3.  相似文献   

11.
Protein dynamics is studied on metmyoglobin by Mössbauer investigations with synchrotron radiation, conventional Mössbauer spectroscopy and incoherent neutron scattering. In the center of interest is the time sensitivity of mean square displacements, 〈x2〉 of special atoms in the protein molecule. Phonon assisted Mössbauer effect labels internal vibrations at the heme iron on a time scale from 6.5 fs to 0.65 ps. The incoherent neutron scattering yields quasi diffusive motions of side chain hydrogens on a time scale faster 100 ps. The quasi diffusive broad lines in the Mössbauer spectrum indicate slow motions of larger segments of the molecule between about 100 ns and 100 ps.  相似文献   

12.
Nanocrystalline Fe particles were successfully prepared by the mechanical milling process using a high-energy planetary ball mill. The physical properties of the samples were investigated as a function of the milling time, t (in the 0-54 h range) by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray (EDX) and Mössbauer spectroscopy. After 54 h of milling, the lattice parameter increases from 0.28620 (3) nm for the starting Fe powder to 0.28667 (3) nm, the grain size decreases from 110 to 13 nm, while the strain increases from 0.09% to 0.7%. The powder particle morphology was observed by SEM at different stages of milling. For t less than 24 h, the Mössbauer spectra are characterized by one sextet corresponding to the crystalline bcc Fe phase, while for t greater than 24 h, the iron particles exhibit a two-component Mössbauer spectrum due to the presence of two phases: the crystallites bcc Fe phase and the grain-boundary region. The appearance and the increase in intensity of the second sextet with t may indicate that the interfacial region effect increases with milling time due to the grain size reduction and a probable disordered state of the grain boundaries.  相似文献   

13.
Polycrystalline Zn0.6Cu0.4Fe2O4 ferrites have been prepared using a solid-state reaction technique. Their structural and magnetic properties have been studied, using X-ray diffraction and Mössbauer and magnetic measurements. These results have been compared to a more general theoretical study, on ZnxCu1−xFe2O4, based on mean field theory and high-temperature series expansions (HTSE), and extrapolated with the Padé approximant method. The nearest neighbour super-exchange interactions for the intra-site and the inter-site of ZnxCu1−xFe2O4 spinel ferrites, in the range 0≤x≤1, have been computed using the probability approach, based on Mössbauer data. The Curie temperature TC is calculated as a function of Zn concentration. The theoretical results obtained are in good agreement with the experimental results obtained by magnetic measurements.  相似文献   

14.
The 57Fe Mössbauer spectroscopy of mononuclear [Fe(II)(isoxazole)6](ClO4)2 has been studied to reveal the thermal spin crossover of Fe(II) between low-spin (S=0) and high-spin (S=2) states. Temperature-dependent spin transition curves have been constructed with the least-square fitted data obtained from the Mössbauer spectra measured at various temperatures between 84 and 270 K during a cooling and heating cycle. This compound exhibits an unusual temperature-dependent spin transition behaviour with TC(↓)=223 and TC(↑)=213 K occurring in the reverse order in comparison to those observed in SQUID observation and many other spin transition compounds. The compound has three high-spin Fe(II) sites at the highest temperature of study of which two undergo spin transitions. The compound seems to undergo a structural phase transition around the spin transition temperature, which plays a significant role in the spin crossover behaviour as well as the magnetic properties of the compound at temperatures below TC. The present study reveals an increase in high-spin fraction upon heating in the temperature range below TC, and an explanation is provided.  相似文献   

15.
A new iron phosphate K4MgFe3(PO4)5 has been synthesized by the flux method and characterized by single-crystal X-ray diffraction and Mössbauer spectroscopy. It crystallizes in the tetragonal system with the space group and the unit cell parameters a=9.714(3) Å and c=9.494(5) Å. The crystal structure is of a new type. It exhibits a three-dimensional framework built up from corner-sharing MO5 (M=0.75Fe+0.25Mg) trigonal bipyramids and PO4 tetrahedra. The K+ ions are occupying large eight-sided tunnels running along c. A room temperature Mössbauer study confirmed the +3 valence state of iron and its five-coordination.  相似文献   

16.
Structural and morphological characteristics of (1−x)α-Fe2O3-xSnO2 (x=0.0-1.0) nanoparticles obtained under hydrothermal conditions have been investigated by X-ray diffraction (XRD), transmission Mössbauer spectroscopy, scanning and transmission electron microscopy as well as energy dispersive X-ray analysis. On the basis of the Rietveld structure refinements of the XRD spectra at low tin concentrations, it was found that Sn4+ ions partially substitute for Fe3+ at the octahedral sites and also occupy the interstitial octahedral sites which are vacant in α-Fe2O3 corundum structure. A phase separation of α-Fe2O3 and SnO2 was observed for x≥0.4: the α-Fe2O3 structure containing tin decreases simultaneously with the increase of the SnO2 phase containing substitutional iron ions. The mean particle dimension decreases from 70 to 6 nm, as the molar fraction x increases up to x=1.0. The estimated solubility limits in the nanoparticle system (1−x)α-Fe2O3-xSnO2 synthesized under hydrothermal conditions are: x≤0.2 for Sn4+ in α-Fe2O3 and x≥0.7 for Fe3+ in SnO2.  相似文献   

17.
The magneto-optical Kerr effect (MOKE) completed by other surface sensitive methods as integral low-energy and conversion electron Mössbauer spectroscopy, scanning and transmission electron microscopy and by X-ray diffraction have been used with the aim to trace the surface microstructure and magnetic properties of FeSiB amorphous ribbons prepared by planar flow casting. The general composition of studied samples is Fe80SixB20−x, where x=4, 6, 8, 10 at.%.It is shown that MOKE used for magnetization, hysteresis loop, and domain structure determination is highly beneficial in a detection of both surface crystallization and local ordering of atoms into magnetically different clusters of amorphous structure. Moreover, a combination of blue and red laser with different penetration depths yields unique results concerning the surface anisotropy and depth sensitivity. In the case of samples with 4, 6, and 8 at.% Si MOKE detects two magnetically different phases diverging in coercivity values Hc, however, not varying with the sample composition. These phases have been identified by Mössbauer measurements as FeSi and FeB clusters. Their relationship changes with Si concentration. On the other hand, a strong increase in the surface Hc found for the sample with 10 at.% Si has indicated a nanocrystallization. It was confirmed by electron microscopy, Mössbauer and X-ray diffraction results. The size of nanocrystals has varied between 200 nm and 500 nm.  相似文献   

18.
19.
The redox behavior of perovskite-type La0.90Sr0.10Al0.85−xFexMg0.15O3−δ (x=0.20-0.40) mixed conductors was analyzed by the Mössbauer spectroscopy and measurements of the total conductivity and Seebeck coefficient in the oxygen partial pressure range from 10−20 to 0.5 atm at 1023-1223 K. The results combined with oxygen-ion transference numbers determined by the faradaic efficiency technique in air, were used to calculate defect concentrations, mobilities, and partial ionic and p- and n-type electronic conductivities as a function of oxygen pressure. The redox and transport processes can be adequately described in terms of oxygen intercalation and iron disproportionation reactions, with the thermodynamic functions independent of defect concentrations. No essential delocalization of the electronic charge carriers was found. The oxygen non-stoichiometry values estimated from the conductivity vs. p(O2) dependencies, coincide with those evaluated from the Mössbauer spectra.  相似文献   

20.
CoFeRhO4 has been studied by Mössbauer spectroscopy and X-ray diffraction. The crystal is found to have a cubic spinel structure with the lattice constant a0=8.451±0.005 Å. The iron ions are in ferric states. The temperature dependence of the magnetic hyperfine field is analyzed by the Néel theory of ferrimagnetism. The intersublattice superexchange interaction is antiferromagnetic and strong with a strength of JAB=−12.39kB while the intrasublattice superexchange interactions are weak with strengths of JAA=−4.96kB and JBB=6.20kB. As the temperature increases toward the Néel temperature TN, a systematic line broadening effect in the Mössbauer spectrum is observed and interpreted to originate from different temperature dependences of the magnetic hyperfine fields at various iron sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号