首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
The physical and chemical properties of the HfO2/SiO2/Si stack have been analyzed using cross-section HR TEM, XPS, IR-spectroscopy and ellipsometry. HfO2 films were deposited by the MO CVD method using as precursors the tetrakis 2,2,6,6 tetramethyl-3,5 heptanedionate hafnium—Hf(dpm)4 and dicyclopentadienil-hafnium-bis-diethylamide—Сp2Hf(N(C2H5)2)2.The amorphous interface layer (IL) between HfO2 and silicon native oxide has been observed by the HRTEM method. The interface layer comprises hafnium silicate with a smooth varying of chemical composition through the IL thickness. The interface layer formation occurs both during HfO2 synthesis, and at the annealing of the HfO2/SiO2/Si stack. It was concluded from the XPS, and the IR-spectroscopy that the hafnium silicate formation occurs via a solid-state reaction at the HfO2/SiO2 interface, and its chemical structure depends on the thickness of the SiO2 underlayer.  相似文献   

2.
Pb1−XLaXTiO3 thin films, (X=0.0; 13 and 0.27 mol%) were prepared by the polymeric precursor method. Thin films were deposited on Pt/Ti/SiO2/Si (1 1 1), Si (1 0 0) and glass substrates by spin coating, and annealed in the 200-300°C range in an O2 atmosphere. X-ray diffraction, scanning electron microscopy and atomic force microscopy were used for the microstructural characterization of the thin films. Photoluminescence (PL) at room temperature has been observed in thin films of (PbLa)TiO3. The films deposited on Pt/Ti/SiO2/Si substrates present PL intensity greater than those deposited on glass and silicon substrates. The intensity of PL in these thin films was found to be dependent on the thermal treatment and lanthanum molar concentration.  相似文献   

3.
Y.J. Guo  X.T. Zu  B.Y. Wang  X.D. Jiang  X.D. Yuan  H.B. Lv  S.Z. Xu 《Optik》2009,120(18):1012-1015
Two-layer ZrO2/SiO2 and SiO2/ZrO2 films were deposited on K9 glass substrates by sol–gel dip coating method. X-ray photoelectron spectroscopy (XPS) technique was used to investigate the diffusion of ZrO2/SiO2 and SiO2/ZrO2 films. To explain the difference of diffusion between ZrO2/SiO2 and SiO2/ZrO2 films, porous ratio and surface morphology of monolayer SiO2 and ZrO2 films were analyzed by using ellipsometry and atomic force microscopy (AFM). We found that for the ZrO2/SiO2 films there was a diffusion layer with a certain thickness and the atomic concentrations of Si and Zr changed rapidly; for the SiO2/ZrO2 films, the atomic concentrations of Si and Zr changed relatively slowly, and the ZrO2 layer had diffused through the entire SiO2 layer. The difference of diffusion between ZrO2/SiO2 and SiO2/ZrO2 films was influenced by the microstructure of SiO2 and ZrO2.  相似文献   

4.
用化学溶液方法在宝石衬底及有LaNiO3缓冲层的Pt/TiO2/SiO2/Si衬底上制备了92%Pb(Mg1/3Nb2/3)O3-8%PbTiO3(PMNT)薄膜,X射线衍射测试结果表明:在有LaNiO3缓冲层的Pt/TiO2/SiO2/Si衬底上制备的PMNT薄膜几乎是纯钙钛矿相,且薄膜 关键词: PMNT薄膜 光学性能 化学溶液法  相似文献   

5.
Au/SiO2 nanocomposite films were prepared on Si wafers by cosputtering of SiO2 and gold wires. Au/Si atomic ratios in Au/SiO2 nanocomposite films were varied from 0.53 to 0.92 by controlling the length of gold wire to study the evolution of the crystallization of gold, the size of Au/SiO2 nanocomposite particles, and the optical properties of as-deposited Au/SiO2 nanocomposite films. An X-ray photoelectron spectroscopy reveals that Au exists as a metallic phase in the bulk of SiO2 matrix. Dome-shaped Au/SiO2 nanocomposite particles and both Au (1 1 1) and (2 0 0) planes were observed in a field-emission scanning electron microscopy and X-ray diffraction studies respectively. With an ultraviolet-visible, absorption peaks of Au/SiO2 nanocomposite films were observed at 525 nm.  相似文献   

6.
Bismuth selenotelluride (Bi2(Te0.9Se0.1)3) films were electrodeposited at constant current density from acidic aqueous solutions with Arabic gum in order to produce thin films for miniaturized thermoelectric devices. X-ray fluorescence spectroscopy determined film compositions. X-ray diffraction pattern shows that the films as deposited are polycrystalline, isostructural to Bi2Te3 and covered by crystallites. Mueller-matrix analysis reveals that the electroplated layers are optically like an isotropic medium. Their pseudo-dielectric functions were determined using mid-infrared spectroscopic ellipsometry. Tauc-Lorentz combined with Drude dispersion relations were successfully used. The energy band gap Eg was found to be about 0.15 eV. Moreover, the fundamental absorption edge was described by an indirect optical band-to-band transition. From Seebeck coefficient measurement, films exhibit n-type charge carrier and the value of thermoelectric power is about −40 μV/K.  相似文献   

7.
Sapphire is a desired material for infrared-transmitting windows and domes because of its excellent optical and mechanical properties. However, its thermal shock resistance is limited by loss of compressive strength along the c-axis of the crystal with increasing temperature. In this paper, double layer films of SiO2/Si3N4 were prepared on sapphire (α-Al2O3) by radio frequency magnetron reactive sputtering in order to increase both transmission and high temperature mechanical performance of infrared windows of sapphire. Composition and structure of each layer of the films were analyzed by X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD), respectively. Surface morphology and roughness of coated and uncoated sapphire have been measured using a talysurf. Flexural strengths of sapphire sample uncoated and coated with SiO2/Si3N4 have been studied by 3-point bending tests at different temperatures. The results show that SiO2/Si3N4 films can improve the surface morphology and reduce the surface roughness of sapphire substrate. In addition, the designed SiO2/Si3N4 films can increase the transmission of sapphire in mid-wave infrared and strengthen sapphire at high temperatures. Results for 3-point bending tests indicated that the SiO2/Si3N4 films increased the flexural strength of c-axis sapphire by a factor of about 1.4 at 800 °C.  相似文献   

8.
Pb0.97La0.02(Zr0.85Sn0.13Ti0.02)O3 (PLZST 2/85/13/2) antiferroelectric thin films were deposited on Pt(111)/Ti/SiO2/Si and LaNiO3(LNO)/SiO2/Si substrates through a modified sol-gel process. The phase structure and microstructure of PLZST 2/85/13/2 antiferroelectric thin films were analysed by x-ray diffraction (XRD), scanning electron microcopy (SEM) and field-emission SEM (FE-SEM). The antiferroelectric nature of the PLZST 2/85/13/2 thin films on two electrodes was demonstrated by the C-V (capacitance-voltage) and P-E (polarization-electric field) measurement. The maximum polarizations for PLZST 2/85/13/2 films on Pt and LNO electrodes were 42 and 18 μC/cm2, respectively. The temperature dependence of the dielectric property of the PLZST 2/85/13/2 films was measured under different dc electric fields. Also, the phase transformation of the PLZST 2/85/13/2 films was studied in detail as a function of temperature and dc electric field.  相似文献   

9.
Transparent SiO2 thin films were selectively fabricated on Si wafer by 157 nm F2 laser in N2/O2 gas atmosphere. The F2 laser photochemically produced active O(1D) atoms from O2 molecules in the gas atmosphere; strong oxidation reaction could be induced to fabricate SiO2 thin films only on the irradiated areas of Si wafer. The oxidation reaction was sensitive to the single pulse fluence of F2 laser. The irradiated areas were swelled and the height was approximately 500-1000 nm at the 205-mJ/cm2 single pulse fluence for 60 min laser irradiation. The fabricated thin films were analytically identified to be SiO2 by the Fourier-transform IR spectroscopy. The SiO2 thin films could be also removed by subsequent chemical etching to fabricate micro-holes 50 nm in depth on Si wafer for microfabrication.  相似文献   

10.
The structure of SiOx (x = 1.94) films has been investigated using both X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (TOF-SIMS). The SiOx films were deposited by vacuum evaporation. XPS spectra show that SiO1.94 films are composed of silicon suboxides and the SiO2 matrix. Silicon clusters appeared only negligibly in the films in the XPS spectra. Si3O+ ion species were found in the TOF-SIMS spectra with strong intensity. These results reveal the structure of the films to be silicon monoxide embedded in SiO2, and this structure most likely exists as a predominant form of Si3O4. The existence of Si-Si structures in the SiO2 matrix will give rise to dense parts in loose glass networks.  相似文献   

11.
The anatase-TiO2 transparent films, containing 3 mol% of Si and P elements (as dopants), were synthesized using a process combining the sol-gel method and spin-coating technique. Effects of relative ratio of dopants and calcination temperature on phase transformation, grain growth, surface morphology, light transmittance, band-gap energy and photocatalytic activity of the P/Si-TiO2 films were examined and their results were compared with those of the undoped-TiO2 and Si-TiO2 films. The P/Si-TiO2 films calcined at temperature between 600 and 900 °C adhered strongly to the surface of fused-silica substrate and were composed of anatase-TiO2 monophase. The photocatalytic activities of the films were measured and represented using a characteristic time constant (τ) for the methylene blue (MB) photodegradation. The small τ stands for high photocatalytic ability of the film. The P/Si-TiO2 film, containing equalmolar Si and P dopants, calcined at 800 °C gave the best performance in photocatalysis; this film had τ=5.7 h and decomposed about 90 mole% of MB in the water after 12 h of the 365-nm UV light irradiation.  相似文献   

12.
Titanium dioxide (TiO2) films were fabricated by cosputtering titanium (Ti) target and SiO2 or Si slice with ion-beam-sputtering deposition (IBSD) technique and were postannealed at 450 °C for 6 h. The variations of oxygen bonding, which included high-binding-energy oxygen (HBO), bridging oxygen (BO), low-binding-energy oxygen (LBO), and three chemical states of titanium (Ti4+, Ti3+ and Ti2+) were analyzed by X-ray photoelectron spectroscopy (XPS). The enhancement of HBO and reduction of BO in O 1s spectra as functions of SiO2 or Si amount in cosputtered film imply the formation of Si-O-Ti linkage. Corresponding increase of Ti3+ in Ti 2p spectra further confirmed the property modification of the cosputtered film resulting from the variation of the chemical bonding. An observed correlation between the chemical structure and optical properties, refractive index and extinction coefficient, of the SiO2 or Si cosputtered films demonstrated that the change of chemical bonding in the film results in the modification of optical properties. Furthermore, it was found that the optical properties of the cosputtered films were strongly depended on the cosputtering targets. In case of the Si cosputtered films both the refractive indices and extinction coefficients were reduced after postannealing, however, the opposite trend was observed in SiO2 cosputtered films.  相似文献   

13.
M. Liu  G. He  Q. Fang  G.H. Li 《Applied Surface Science》2006,252(18):6206-6211
High-k HfO2-Al2O3 composite gate dielectric thin films on Si(1 0 0) have been deposited by means of magnetron sputtering. The microstructure and interfacial characteristics of the HfO2-Al2O3 films have been investigated by using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and spectroscopic ellipsometry (SE). Analysis by XRD has confirmed that an amorphous structure of the HfO2-Al2O3 composite films is maintained up to an annealing temperature of 800 °C, which is much higher than that of pure HfO2 thin films. FTIR characterization indicates that the growth of the interfacial SiO2 layer is effectively suppressed when the annealing temperature is as low as 800 °C, which is also confirmed by spectroscopy ellipsometry measurement. These results clearly show that the crystallization temperature of the nanolaminate HfO2-Al2O3 composite films has been increased compared to pure HfO2 films. Al2O3 as a passivation barrier for HfO2 high-k dielectrics prevents oxygen diffusion and the interfacial layer growth effectively.  相似文献   

14.
We have investigated cathodeluminescence (CL) of Ge implanted SiO2:Ge and GeO2:Ge films. The GeO2 films were grown by oxidation of Ge substrate at 550 °C for 3 h in O2 gas flow. The GeO2 films on Ge substrate and SiO2 films on Si substrate were implanted with Ge-negative ions. The implanted Ge atom concentrations in the films were ranging from 0.1 to 6.0 at%. To produce Ge nanoparticles the SiO2:Ge films were thermally annealed at various temperatures of 600-900 °C for 1 h in N2 gas flow. An XPS analysis has shown that the implanted Ge atoms were partly oxidized. CL was observed at wavelengths around 400 nm from the GeO2 films before and after Ge-implantation as well as from SiO2:Ge films. After Ge-implantation of about 0.5 at% the CL intensity has increased by about four times. However, the CL intensity from the GeO2:Ge films was several orders of magnitude smaller than the intensity from the 800 °C-annealed SiO2:Ge films with 0.5 at% of Ge atomic concentration. These results suggested that the luminescence was generated due to oxidation of Ge nanoparticles in the SiO2:Ge films.  相似文献   

15.
Ba(Sn0.15Ti0.85)O3 (BTS) thin films were grown on Pt(1 1 1)/Ti/SiO2/Si and LaNiO3(LNO)/Pt(1 1 1)/Ti/SiO2/Si substrates by a sol-gel processing technique, respectively. The BTS thin films deposited on annealed Pt(1 1 1)/Ti/SiO2/Si and annealed LNO/Pt(1 1 1)/Ti/SiO2/Si substrates exhibited strong (1 1 1) and perfect (1 0 0) orientations, respectively. The BTS thin films grown on un-annealed Pt(1 1 1)/Ti/SiO2/Si substrates showed random orientation with intense (1 1 0) peak, while the films deposited on un-annealed LNO/Pt(1 1 1)/Ti/SiO2/Si substrate exhibited random orientation with intense (1 0 0) peak, respectively. The dielectric constant of the BTS films deposited on annealed Pt(1 1 1)/Ti/SiO2/Si, annealed LNO/Pt(1 1 1)/Ti/SiO2/Si, un-annealed Pt(1 1 1)/Ti/SiO2/Si and un-annealed LNO/Pt(1 1 1)/Ti/SiO2/Si substrates was 512, 565, 386 and 437, respectively, measured at a frequency of 100 kHz. A high tunability of 49.7% was obtained for the films deposited on annealed LNO/Pt(1 1 1)/Ti/SiO2/Si substrate, measured at the frequency of 100 kHz with an applied electric field of 200 kV/cm. The high tunability has been attributed to the (1 0 0) texture of the films and larger grain sizes.  相似文献   

16.
在低温Pt/Ti/SiO2/Si衬底上用脉冲准分子激光沉积技术结合氧气氛下700℃退火获得高质量的SBT薄膜,其择优取向为(008)和(115).薄膜厚度约为200nm.铁电性能测试显示较饱和的、方形的电滞回线,其剩余极化和矫顽电场分别为10μC/cm2和57kV/cm,在1010次开关极化后没有显示任何疲劳,在5V直流电压下的漏电流密度约为4×10-8A/cm2,直流击穿电场约为250kV/cm 关键词:  相似文献   

17.
CuInSe2/In2O3 structures were formed by depositing CuInSe2 films by stepwise flash evaporation onto In2O3 films, which were grown by DC reactive sputtering of In target in presence of (Ar+O2) gas mixture. Phase purity of the CuInSe2 and In2O3 films was confirmed by Transmission Electron Microscopy (TEM) studies. X-ray diffraction (XRD) results on CuInSe2/In2O3/glass structures showed sharp peaks corresponding to (112) plane of CuInSe2 and (222) plane of In2O3. Rutherford Backscattering Spectrometry (RBS) investigations were carried out on CuInSe2/In2O3/Si structures in order to characterize the interface between In2O3 and CuInSe2. The results show that the CuInSe2 films were near stoichoimetric and In2O3 films had oxygen deficient composition. CuInSe2/In2O3 interface was found to include a ∼20 nm thick region consisting of copper, indium and oxygen. Also, the In2O3/Si interface showed the formation of ∼20 nm thick region consisting of silicon, indium and oxygen. The results are explained on the basis of diffusion/reaction taking place at the respective interfaces.  相似文献   

18.
We report on Si nanodot formation by chemical vapor deposition (CVD) of ultrathin films and following oxidation. The film growth was carried out by hot-filament assisted CVD of CH3SiH3 and Dy(DPM)3 gas jets at the substrate temperature of 600 °C. The transmission electron microscopy observation and X-ray photoelectron spectroscopy analysis indicated that ∼35 nm Dy-doped amorphous silicon oxycarbide (SiCxOy) films were grown on Si(1 0 0). The Dy concentration was 10-20% throughout the film. By further oxidation at 860 °C, the smooth amorphous film was changed to a rough structure composed of crystalline Si nanodots surrounded by heavily Dy-doped SiO2.  相似文献   

19.
Ba0.6Sr0.4TiO3 thin films were deposited on Pt/SiO2/Si substrate by radio frequency magnetron sputtering. High-resolution transmission electron microscopy (HRTEM) observation shows that there is a transition layer at BST/Pt interface, and the layer is about 7-8 nm thickness. It is found that the transition layer was diminished to about 2-3 nm thickness by reducing the initial RF sputtering power. X-ray photoelectron spectroscopy (XPS) depth profiles show that high Ti atomic concentration results in a thick interfacial transition layer. Moreover, the symmetry ν of ?r-V curve of BST thin film is enhanced from 52.37 to 95.98%. Meanwhile, the tunability, difference of negative and positive remanent polarization (Pr), and that of coercive field (EC) are remarkably improved.  相似文献   

20.
Bi0.8La0.2FeO3/CoFe2O4 (BLFO/CFO) multilayer thin films (totally 20 layers BLFO and 19 layers CFO) were prepared on Pt/Ti/SiO2/Si substrates by pulsed laser deposition. X-ray diffraction and transmission electron microscope measurements show that the films are polycrystalline and consisted of multilayered structure. Ferroelectric hysteresis loops with remnant polarization and saturated polarization of 4.2 and 13.3 μC/cm2, respectively, were observed. On the other hand, the films show well-shaped magnetization hysteresis loops with saturated and remnant magnetization of 34.7 and 11.4 emu/cm3, respectively, which are significantly larger than pure BLFO thin films deposited under the same conditions. These results indicate that constructing epitaxial superlattice might be a promising way to fabricate multiferroics with improved properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号