首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
Planar quarter wave stacks based on amorphous chalcogenide Ge-Se alternating with polymer polystyrene (PS) thin films are reported as Bragg reflectors for near-infrared region. Chalcogenide films were prepared using a thermal evaporation (TE) while polymer films were deposited using a spin-coating technique. The film thicknesses, d∼165 nm for Ge25Se75 (n=2.35) and d∼250 nm for polymer film (n=1.53), were calculated to center the reflection band round 1550 nm, whose wavelengths are used in telecommunication. Optical properties of prepared multilayer stacks were determined in the range 400-2200 nm using spectral ellipsometry, optical transmission and reflection measurements. Total reflection for normal incidence of unpolarized light was observed from 1530 to 1740 nm for 8 Ge-Se+7 PS thin film stacks prepared on silicon wafer. In addition to total reflection of light with normal incidence, the omnidirectional total reflection of TE-polarized light from 8 Ge-Se+7 PS thin film stacks was observed. Reflection band maxima shifted with varying incident angles, i.e., 1420-1680 nm for 45° deflection from the normal and 1300-1630 nm for 70° deflection from the normal.  相似文献   

2.
Magnetic reversal mechanism of the Sub/AlN5 nm/[CoPt2 nm/AlN5 nm]5 nano multilayer film, which shows strong perpendicular magnetic anisotropy (Ku=6.7×106 erg/cm3), has been studied. The angle-dependent magnetic hysteresis loops of this highly perpendicular anisotropic CoPt/AlN multilayer film were measured in the present work, applying a magnetic field along different angles φ with respect to the film normal. It demonstrates that the magnetic reversal of the CoPt ultrathin layers in the CoPt/AlN multilayer film is occurred by the reversible magnetization rotation and the irreversible displacement of domain walls. The φ-dependent part of coercive field is resulted from the internal stress according to the Kondorsky and Kersten model. The φ-independent part of coercive field implies some random and isotropy pinning centers (e.g., vacancies, dislocations, grain boundaries) in the ultrathin CoPt layers. Our work is useful for coercivity control of metal/ceramics layered structures, in particular the perpendicular magnetic tunneling junctions.  相似文献   

3.
The effects of different hole injection materials as the buffer layer on the electro-luminescence (EL) performances of white organic light-emitting diodes (WOLEDs) are investigated in detail. It is found that the EL performances and electric properties were strongly dependent on the structure of the used hole injection materials with different thicknesses, which directly affected the injection and transport properties in devices, and thus the EL efficiency and lifetime. It can be seen that a hybrid buffer layer of 5 nm aluminum fluoride (AlF3)/15 nm 4,4′,4″-tris(3-methylphenylphenylamino) (m-MTDATA) as the hole injection buffer layer shows the best EL performances in efficiency and lifetime, showing a promising hole injection material in WOLEDs. The mechanisms behind the enhanced performance of the hybrid buffer layer in WOLEDs are discussed based on X-ray photoelectron spectroscopy (XPS) measurement.  相似文献   

4.
Five-layered Si/SixGe1−x films on Si(1 0 0) substrate with single-layer thickness of 30 nm, 10 nm and 5 nm, respectively were prepared by RF helicon magnetron sputtering with dual targets of Si and Ge to investigate the feasibility of an industrial fabrication method on multi-stacked superlattice structure for thin-film thermoelectric applications. The fine periodic structure is confirmed in the samples except for the case of 5 nm in single-layer thickness. Fine crystalline SixGe1−x layer is obtained from 700 °C in substrate temperature, while higher than 700 °C is required for Si good layer. The composition ratio (x) in SixGe1−x is varied depending on the applied power to Si and Ge targets. Typical power ratio to obtain x = 0.83 was 7:3, Hall coefficient, p-type carrier concentration, sheet carrier concentration and mobility measured for the sample composed of five layers of Si (10 nm)/Si0.82Ge0.18 (10 nm) are 2.55 × 106 /°C, 2.56 × 1012 cm−3, 1.28 × 107 cm−2, and 15.8 cm−2/(V s), respectively.  相似文献   

5.
In this work we present the results obtained from the luminescence spectra and X-ray diffraction as well as transmission electron microscopy, at room temperature on crystals of NaCl1−xNaBrx:MnCl2:0.3% (x=0.00, 0.05, 0.25, and 0.50). The results suggest the existence of structures between the crystal planes (1 1 1) and (2 0 0), which may be associated with different types of Mn2+ arrangements, such as dipole complexes, octahedral and rhombohedral structures as well as other possible nanostructures that include mixtures of bromine/chlorine ions. These are responsible for the emission spectra of “as grown” crystals consisting of maxima around 500 nm and 600 nm. The green emission has been usually attributed to rhombohedral/tetrahedral symmetry sites; the present results point out that this is due to Mn–Cl/Br nanostructures with rhombohedral structure. On the other hand when the crystals are thermally quenched from 500 °C to room temperature the structures previously detected present changes. Only a red band appears around 620 nm if the samples are later annealed at 80 °C.  相似文献   

6.
This study demonstrates that nanocrystalline TiO2 thin films were deposited on ITO/glass substrate by radio-frequency magnetron sputtering. Field-emission scanning electron microscope (FE-SEM) and atomic force microscopic (AFM) images showed the morphology of TiO2 channel layer with grain size and root-mean-square (RMS) roughness of 15 and 5.39 nm, respectively. TiO2 thin-film transistors (TFTs) with sputter-SiO2 gate dielectric layer were also fabricated. It was found that the devices exhibited enhancement mode characteristics with the threshold voltage of 7.5 V. With 8-μm gate length, it was also found that the Ion/off ratio and off-state current were around 1.45×102 and 10 nA, respectively.  相似文献   

7.
Platinum intermediate transparent and conducting ITO/metal/ITO (IMI) multilayered films were deposited by RF and DC magnetron sputtering on polycarbonate substrates without intentional substrate heating. Changes in the microstructure and optoelectrical properties of the films were investigated with respect to the thickness of the intermediate Pt layer in the IMI films. The thickness of Pt film was varied from 5 to 20 nm.In XRD measurements, neither ITO single-layer films nor IMI multilayer films showed any characteristic diffraction peaks for In2O3 or SnO2. Only a weak diffraction peak for Pt (1 1 1) was obtained in the XRD spectra. Thus, it can be concluded that the Pt-intermediated films in the IMI films did not affect the crystallinity of the ITO films. However, equivalent resistivity was dependent on the presence and thickness of the Pt-intermediated layer. It decreased as low as 3.3×10−4 Ω cm for ITO 50 nm/Pt 20 nm/ITO 30 nm films. Optical transmittance was also strongly influenced by the Pt-intermediated layer. As Pt thickness in the IMI films increased, optical transmittance decreased to as low as 30% for ITO 50 nm/Pt 20 nm/ITO 30 nm films.  相似文献   

8.
Transparent conducting thin films of fluorine-doped tin oxide (FTO) have been deposited onto the preheated glass substrates of different thickness by spray pyrolysis process using SnCl4·5H2O and NH4F precursors. Substrate thickness is varied from 1 to 6 mm. The films are grown using mixed solvent with propane-2-ol as organic solvent and distilled water at optimized substrate temperature of 475 °C. Films of thickness up to 1525 nm are grown by a fine spray of the source solution using compressed air as a carrier gas. The films have been characterized by the techniques such as X-ray diffraction, optical absorption, van der Pauw technique, and Hall effect. The as-deposited films are preferentially oriented along the (2 0 0) plane and are of polycrystalline SnO2 with a tetragonal crystal structure having the texture coefficient of 6.19 for the films deposited on 4 mm thick substrate. The lattice parameter values remain unchanged with the substrate thickness. The grain size varies between 38 and 48 nm. The films exhibit moderate optical transmission up to 70% at 550 nm. The figure of merit (φ) varies from 1.36×10−4 to 1.93×10−3 Ω−1. The films are heavily doped, therefore degenerate and exhibit n-type electrical conductivity. The lowest sheet resistance (Rs) of 7.5 Ω is obtained for a typical sample deposited on 4 mm thick substrate. The resistivity (ρ) and carrier concentration (nD) vary over 8.38×10−4 to 2.95×10−3 Ω cm and 4.03×1020 to 2.69×1021 cm−3, respectively.  相似文献   

9.
A new molecular complex of C60 with tetrabenzo(1,2-bis[4H-thiopyran-4-ylidene]ethene), Bz4BTPE C60 (1) has been obtained. The complex has a layered structure in which closely packed hexagonal layers of C60 alternate with the layers composed of Bz4BTPE molecules. The complex has a neutral ground state according to UV-vis-NIR spectrum. It has been found that single crystals of 1 show low ‘dark’ conductivity of σ∼10−10 (Ω cm)−1. A 102 increase in photocurrent has been observed upon illuminating the crystal with white light. Photoconductivity of 1 is sensitive to magnetic field with B0<1 T and increases up to 5% in magnetic field. The photoconductivity spectra of the complex indicate that free charge carriers are generated in the UV-visible range mainly by the Bz4BTPE excitation (the peaks at 622, 562, 472 and 348 nm) with a possible contribution of charge transfer excitations between neighboring C60 molecules (the peak at 472 nm).  相似文献   

10.
The role of inorganic ceramic fillers namely nanosized Al2O3 (15-25 nm) and TiO2 (10-14 nm) and ferroelectric filler SrBi4Ti4O15 (SBT CIT) (0.5 μm) synthesized by citrate gel technique (CIT) on the ionic conductivity and electrochemical properties of polymer blend 15 wt% PMMA+PEO8:LiClO4+2 wt% EC/PC electrolytes were investigated. Enhancement in conductivity was obtained with a maximum of 0.72×10−5 S cm−1 at 21 °C for 2 wt% of SrBi4Ti4O15 (SBT CIT) composite polymer electrolyte. The lithium-ion transport number and the electrochemical stability of the composite polymer electrolytes at ambient temperature were analyzed. An enhancement in electrochemical stability was observed for polymer composites containing 2 wt% of SrBi4Ti4O15 (SBT CIT) as fillers.  相似文献   

11.
Single- and multi-shot ablation thresholds of gold films in the thickness range of 31-1400 nm were determined employing a Ti:sapphire laser delivering pulses of 28 fs duration, 793 nm center wavelength at 1 kHz repetition rate. The gold layers were deposited on BK7 glass by an electron beam evaporation process and characterized by atomic force microscopy and ellipsometry. A linear dependence of the ablation threshold fluence Fth on the layer thickness d was found for d ≤ 180 nm. If a film thickness of about 180 nm was reached, the damage threshold remained constant at its bulk value. For different numbers of pulses per spot (N-on-1), bulk damage thresholds of ∼0.7 J cm−2 (1-on-1), 0.5 J cm−2 (10-on-1), 0.4 J cm−2 (100-on-1), 0.25 J cm−2 (1000-on-1), and 0.2 J cm−2 (10000-on-1) were obtained experimentally indicating an incubation behavior. A characteristic layer thickness of Lc ≈ 180 nm can be defined which is a measure for the heat penetration depth within the electron gas before electron-phonon relaxation occurs. Lc is by more than an order of magnitude larger than the optical absorption length of α−1 ≈ 12 nm at 793 nm wavelength.  相似文献   

12.
A p-ZnO:N/n-GaN:Si structure heterojunction light-emitting diode (LED) is fabricated on c-plane sapphire by full metal organic chemical vapor deposition (MOCVD) technique. The p-type layer with hole concentration of 8.94×1016 cm−3 is composed of nitrogen-doped ZnO using NH3 as the doping source with subsequent annealing in N2O plasma ambient. Silicon-doped GaN film with electron concentration of 1.15×1018 cm−3 is used as the n-type layer. Desirable rectifying behavior is observed from the current-voltage (I-V) curve of the device. The forward turn on voltage is about 4 V and the reverse breakdown voltage is more than 7 V. A distinct ultraviolet (UV) electroluminescence (EL) with a dominant emission peak centered at 390 nm is detected at room temperature from the heterojunction structure under forward bias conditions. The origins of the EL emissions are discussed in comparison with the photoluminescence (PL) spectra.  相似文献   

13.
Atomic and electronic structures of CeO2 (1 1 1), (1 1 0) and (1 0 0) surfaces are investigated using the first-principles density functional theory taking into account the on-site Coulomb interaction. Both the stoichiometric and O-deficient surfaces are examined in order to clarify the overall features. The CeO2 (1 1 1) is found to be the most stable surface, followed by the (1 1 0) and (1 0 0) surfaces, consistent with experimental observations. Three surfaces exhibit different features of relaxation. Large relaxations are found at the (1 1 0) and (1 0 0) surfaces, while very small changes are observed at the (1 1 1) surface. It is found that the O-vacancy occurs more readily at the (1 1 0) surface as compared with the (1 1 1) surface. Furthermore, the formation energies of the O-vacancy in the surfaces are lower than that in the bulk. The energetically favorable O-vacancy locates in the second O-atomic layer for the (1 1 1) while at the surface layer for the (1 1 0). The excess electrons left with the removal of the O atom are distributed in the first two layers with certain (a considerable) fraction filling the Ce-4f states.  相似文献   

14.
The optical absorption of the As-prepared and annealed As45.2Te46.6In8.2 thin films are studied. Films annealed at temperatures higher than 453 K show a decrease in the optical energy gap (Eo). The value of Eo increases from 1.9 to 2.43 eV with increasing thickness of the As-prepared films from 60 to 140 nm. The effect of thickness on high frequency dielectric constant (?) and carrier concentration (N) is also studied. The crystalline structures of the As45.2Te46.6In8.2 thin films resulting from heat treatment of the As-prepared film at different elevated temperatures is studied by X-ray diffraction. An amorphous-crystalline transformation is observed after annealing at temperatures higher than 453 K. The electrical conductivity at low temperatures is found due to the electrons transport by hopping among the localized states near the Fermi level. With annealing the films at temperatures higher than 473 K (the crystallization onset temperature) for 1 h, the electrical conductivity increases and the activation energy decreases, which can be attributed to the amorphous-crystalline transformations.  相似文献   

15.
A method for the formation of Au nanocrystal (nc) arrays embedded in an ultrathin SiO2 layer in one vacuum cycle is proposed. The method is based on the co-deposition in vacuum of ∼1 nm thick uniform Si-Au amorphous layer at a specific composition ratio by Pulsed Laser Deposition on the pre-oxidized Si(1 0 0) substrate, followed by its oxidation in the glow discharge oxygen plasma at room temperature, resulting in the precipitation of Au ncs at the bottom interface and/or at the surface of the forming SiO2 layer. The capping SiO2 layer is formed by the glow discharge plasma oxidation of further deposited ultrathin Si layer. Au ncs 2-5 nm in size and with the separation of ∼3-20 nm from each other segregate during the oxidation of Au-Si mixture as evidenced by transmission electron microscopy (TEM). The evolution of Au and Si chemical state upon each step of the SiO2:nc-Au nanocomposite structure formation is monitored in situ by X-ray photoelectron spectroscopy (XPS). The metrology of nanocomposite SiO2:nc-Au structures describing the space distribution of Au ncs as a function of Au/Si ratio is presented.  相似文献   

16.
Alumina films are fabricated on Kapton polymer by aluminum plasma immersion ion implantation and deposition in an oxidizing ambient and the effects of the bias voltage on the film properties are investigated. Rutherford backscattering spectrometry (RBS) reveals successful deposition of alumina films on the polymer surface and that the O to Al ratio is higher than that of stoichiometric Al2O3. The thickness of the modified layers decreases from 200 to 120 nm when the bias voltage is increased from 5 to 20 kV. Our results indicate that higher bombardment energy may lead to higher crack resistance and better film adhesion. However, a higher sample bias degrades the optical properties of the films as indicated by the higher absorbance and lower energy band gap. Therefore, the processing voltage must be optimized to yield a protective layer with the appropriate thickness, superior optical properties, as well as high crack resistance.  相似文献   

17.
Electroluminescent (EL) spectra was employed to probe the triplet exciton diffusion length (LT) of a commonly used host material of N,N′-dicarbazolyl-3,5-benzene (mCP) in phosphorescent organic light-emitting devices (OLEDs). By varying the film thickness of bis [2-(4-tertbutylphenyl) benzothiazolato-N,C2], iridium (acetylacetonate) [(t-bt)2Ir(acac)] phosphor doped layer within 30 nm thick mCP layer, a series of devices were fabricated to investigate the EL characteristics. The results showed that with the increasing doped layer thickness (d), both (t-bt)2Ir(acac) emission peaks at 562 nm and mCP emission centered at 403 nm were observed. Moreover, the relationship between mCP EL intensity and d was detected. The LT was induced by an abrupt decrease in variation of mCP EL intensity when d is increased from 10 to 15 nm, and the reason to cause this phenomenon was investigated. The LT of mCP approximately to 15 nm was perfectly consistent to the result of 16±1 nm, which was calculated by the traditional steady-state diffusion model.  相似文献   

18.
Nickel film, with total thickness tNi in the range 1000-2000 Å, is known to exhibit perpendicular magnetic anisotropy (PMA), if the film has been deposited at room temperature. This phenomenon is due to the magneto-elastic (ME) effect. The same is also true for the (Ni/Pd)n multilayers, where n is the period (n≥3). In this paper, we have made two kinds of multilayers: one, which does not have a Pd cap layer, belongs to the A-group, and the other, which has, belongs to the B-group. The polar Kerr rotation θk, the polar Kerr ellipticity εk, and the figure of merit (θk)2R, where R is the reflectance, were measured for the two wavelengths, i.e. λ=633 and 442 nm, respectively. The effective PMA energy K was measured from the vibrating sample magnetometer. It was found that the most favorable multilayer for the magneto-optical (MO) application exists among the A-group samples: i.e. the tNi=1300 Å, tPd=50 Å (seed layer), and n=1 sample. We obtained θk=−9.76 min, εk=−9.13 min, (θk)2R=1.51 (rad)2 at λ=442 nm, and K=3.21×106 erg/cc for this optimal multilayer. Finally, the effects of the Pd seed layer on PMA and MO are also studied.  相似文献   

19.
Ten layers of self-assembled InMnAs quantum dots with InGaAs barrier were grown on high resistivity (1 0 0) p-type GaAs substrates by molecular beam epitaxy (MBE). The presence of ferromagnetic structure was confirmed in the InMnAs diluted magnetic quantum dots. The ten layers of self-assembled InMnAs quantum dots were found to be semiconducting, and have ferromagnetic ordering with a Curie temperature, TC=80 K. It is likely that the ferromagnetic exchange coupling of sample with TC=80 K is hole mediated resulting in Mn substituting In and is due to the bound magnetic polarons co-existing in the system. PL emission spectra of InMnAs samples grown at temperature of 275, 260 and 240 °C show that the interband transition peak centered at 1.31 eV coming from the InMnAs quantum dot blueshifts because of the strong confinement effects with increasing growth temperature.  相似文献   

20.
Thermal stability of Ag layer on Ti coated Si substrate for different thicknesses of the Ag layer have been studied. To do this, after sputter-deposition of a 10 nm Ti buffer layer on the Si(1 0 0) substrate, an Ag layer with different thicknesses (150-5 nm) was sputtered on the buffer layer. Post annealing process of the samples was performed in an N2 ambient at a flow rate of 200 ml/min in a temperature range from 500 to 700 °C for 30 min. The electrical property of the heat-treated multilayer with the different thicknesses of Ag layer was examined by four-point-probe sheet resistance measurement at the room temperature. Phase formation and crystallographic orientation of the silver layers were studied by θ-2θ X-ray diffraction analysis. The surface topography and morphology of the heat-treated films were determined by atomic force microscopy, and also, scanning electron microscopy. Four-point- probe electrical measurement showed no considerable variation of sheet resistance by reducing the thickness of the annealed Ag films down to 25 nm. Surface roughness of the Ag films with (1 1 1) preferred crystallographic orientation was much smaller than the film thickness, which is a necessary condition for nanometric contact layers. Therefore, we have shown that the Ag layers with suitable nano-thicknesses sputtered on 10 nm Ti buffer layer were thermally stable up to 700 °C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号