首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Thermal silicon oxide layers have been implanted at 600 °C with N++C+, N++B+ and N++C++B+ ions. Two different implantation doses have been chosen in order to introduce peak concentrations at the projected range comparable to the SiO2 density. Some pieces of the samples have been annealed in conventional furnace at 1200 °C for 3 h. After annealing, cathodoluminescence measurements show in all cases a main broad band centered at 460 nm (2.7 eV). High doses of C implantation give rise to an intensity attenuation. Phases formed in the oxides have been investigated by Fourier transform infrared spectroscopy before and after annealing. The spectra suggest that N incorporates as BN and probably as a ternary BCN phase in the triply implanted samples, while C seems to bond mainly with B. Boron is also bonded to O in B-O-Si configuration. Depth structure and quantitative composition of the films were deduced from fittings of the spectroscopic ellipsometry measurements.  相似文献   

2.
Interface properties of BCN/GaN metal-insulator-semiconductor (MIS) structures are investigated by X-ray photoelectron spectroscopy (XPS) and capacitance versus voltage (C-V) characteristics measurements. The BCN/GaN samples are fabricated by in situ process consisting of plasma treatment and deposition of BCN film in the plasma-assisted chemical vapor deposition (PACVD) apparatus. XPS measurement shows that the oxide formation at the BCN/GaN interface is suppressed by nitrogen (N2) and hydrogen (H2) plasma treatment. The interface state density is estimated from C-V characteristics measured at 1 MHz using Terman method. The minimum interface state density appears from 0.2 to 0.7 eV below the conduction band edge of GaN. The minimum value of the interface state density is estimated to be 3.0 × 1010 eV−1 cm−2 for the BCN/GaN structure with mixed N2 and H2 plasma treatment for 25 min. Even after annealing at 430 °C for 10 min, the interface state density as low as 6.0 × 1010 eV−1 cm−2 is maintained.  相似文献   

3.
Amorphous carbon nitride films, prepared using a dc facing-target reactive sputtering system, were annealed at temperatures up to 650 °C for 1 h in vacuum. The effects of heat treatment on the films, i.e. changes in the composition and structure, were investigated. It was found that annealing at temperatures ranging from 300 to 650 °C, results in the N content decreasing from ∼33 at.% in the as-deposited films to ∼5 at.%. The loss of N, especially those bonded to sp3C, causes the rearrangement of the film's microstructure, and the dual effects of the thermal annealing are quite noticeable: (1) annealing destroys most graphite-like structures, and more non-aromatic sp2C components and C≡N terminal structures are formed at higher annealing temperatures, contributing to a looser film's structure. (2) Annealing makes the remaining aromatic sp2C structure become more order. The results also reveal that N atoms bonded to sp3C are easily removed with the increasing temperature compared to those bonded to sp2C, which indicates that Nsp2C bonds had a higher thermal stability than Nsp3C.  相似文献   

4.
Carbon nitride (CNx) thin films have been grown on Si 〈1 0 0〉 by 193 nm ArF ns pulsed laser ablation of a pure graphite target in a low pressure atmosphere of a RF generated N2 plasma and compared with samples grown by PLD in pure nitrogen atmosphere. Composition, structure and bonding of the deposited materials have been evaluated by X-ray photoelectron spectroscopy (XPS), and Raman scattering. Significant chemical and micro-structural changes have been registered, associated to different nitrogen incorporation in the two types of films analyzed. The intensity of the reactive activated species is, indeed, increased by the presence of the bias confined RF plasma, as compared to the bare nitrogen atmosphere, thus resulting in a different nitrogen uptake in the growing films. The process has been also investigated by some preliminary optical emission studies of the carbon plume expanding in the nitrogen atmosphere. Optical emission spectroscopy reveals the presence of many excited species like C+ ions, C atoms, C2, N2; and CN radicals, and N2+ molecular ions, whose relative intensity appears to be increased in the presence of the RF plasma. The films were also characterised for electrical properties by the “four-probe-test method” determining sheet resistivity and correlating surface conductivity with chemical composition.  相似文献   

5.
N-doped ZnO films were produced using N2 as N source by metal-organic chemical vapor deposition (MOCVD) system which has been improved with radio-frequency (RF)-assisted equipments. The data of secondary ion mass spectroscopy (SIMS) indicate that the concentration of N in N-doped ZnO films is around 5 × 1020 cm−3, implying that sufficient incorporation of N into ZnO can be obtained by RF-assisted equipment. On this basis, the structural, optical and electrical properties of Al-N codoped ZnO films were studied. Then, the effect of RF power on crystal quality, surface morphologies, optical properties was analyzed using X-ray diffraction, atomic force microscopy and photo-luminescence methods. The results illustrate that the RF plasma is the key factor for the improvement of crystal quality. Then the observation of A0X recombination associated with NO acceptor in low-temperature PL spectrum proved that some N atoms have occupied the positions of O atoms in ZnO films. Hall measurements shown that p-type ZnO film deposited on quartz glasses was obtained when RF power was 150 W for the Al-N codoped ZnO films, while the resistivity of N-doped ZnO films was rather high. Compared with the Al-doped ZnO film, the obviously increased resistivity of codoped films indicates that the formation of NO acceptors compensate some donors in ZnO films effectively.  相似文献   

6.
Synthesis and characterization of the structural and magnetic properties of a 2-line (2L) ferrihydrite (FHYD) sample based on the composition Fe:Al:Cu=100:25:5 are reported. Typical of 2L-FHYDs, this sample also yields the two broad lines in X-ray diffraction and triplet in the 1400-1700 cm−1 range in IR spectroscopy. However, in transmission electron microscopy, nanoflakes of about 5-20 nm size but without any hint of diffraction fringes characteristic of crystalline order were observed. Temperature dependence (2-380 K) of the magnetization M vs. applied field H (up to ±65 kOe) of this non-crystalline ferrihydrite is used to establish a blocking temperature TB?20 K, Néel temperature TN?365 K and a spin-glass ordering of the surface Fe3+ spins at TS?6 K. These magnitudes of TB and TS are considerably smaller than those of a 5 nm undoped 2L crystalline ferrihydrite with TB=70 K and TS=30 K. The fit of the M vs. H data for several T>TB to a modified Langevin function is shown to collapse onto a universal curve yielding a temperature-independent average magnetic moment μP=70(5)μB per nanoflake. Analysis of these parameters obtained from the fits of M vs. H data above TB is used to show that the effective average volume of the nanoflakes is about 1/3 that of spherical 5 nm crystalline 2L-FHYD. It is argued that these lower magnitudes of μP, TB, and TS for the nanoflakes result from their smaller effective volume determined here.  相似文献   

7.
Magnetization and susceptibility were investigated as a function of temperature and magnetic field in polycrystalline Mn[Cr0.5Ga1.5]S4 spinel. The dc susceptibility measurements at 919 Oe showed a disordered ferrimagnetic behaviour with a Curie-Weiss temperature θCW=−55 K and an effective magnetic moment of 5.96 μB close to the spin-only value of 6.52 μB for Cr3+ and Mn2+ ions in the 3d3 and 3d5 configurations, respectively. The magnetization measured at 100 Oe revealed the multiple magnetic transitions with a sharp maximum at the Néel temperature TN=3.9 K, a minimum at the Yafet-Kittel temperature TYK=5 K, a broad maximum at the freezing temperature Tf=7.9 K, and an inflection point at the Curie temperature TC=48 K indicating a transition to paramagnetic phase. A large splitting between the zero-field-cooled (ZFC) and field-cooled (FC) magnetizations at a temperature smaller than TC suggests the presence of spin-glass-like behaviour. This behaviour is considered in a framework of competing interactions between the antiferromagnetic ordering of the A(Mn) sublattice and the ferromagnetic ordering of the B(Cr) sublattice.  相似文献   

8.
Oxygen-related electronic structures of CNTs (carbon nanotubes) grown by rapid thermal chemical vapor deposition (RT-CVD) have been investigated by using partial electron yield near edge X-ray absorption spectroscopy (PEY-NEXAFS) and X-ray photoelectron spectroscopy (XPS). On the CNT surface with increased oxygen resulting from e-beam irradiation under the O2 gas environment, C k-edge NEXAFS spectra showed an increase of the oxygen-related resonance peaks ranging from 287 to 289 eV whereas the sp2 related peak at 285.4 eV was nearly unchanged. After the complete removal process of the oxygen atom on the surface by annealing the sample at 500 °C for 30 min, C K-edge spectra showed an abrupt decrease of the oxygen-related resonance peaks in 287-289 eV and an increase of the sp2 related peak at 285.4 eV, indicating that the degree of crystallinity in the CNT sample was improved.  相似文献   

9.
The nitrogen 1s near-edge X-ray absorption fine structure (NEXAFS) spectra of the N2O adsorbed on Ag(1 1 0) have been studied by the multiple-scattering cluster (MSC) and self-consistent field (SCF) DV-Xα methods. Two adsorption models, in which the N2O molecule attached to the Ag substrate through the central nitrogen (NC) atom and the terminal nitrogen (NT) atom, respectively, have been checked up thoroughly. The MSC calculation and the R-factor analysis show that the N2O molecule is attached to the Ag substrate through the terminal nitrogen atom with the adsorption height h = 3.4 ± 0.1 Å. In the overlayer the N2O molecules arrange themselves into a tilted chain due to the interaction between the cations and the anions in the molecules. The physical cause of the resonances in the NEXAFS spectra mentioned above has been discussed by the DV-Xα method, which confirms the MSC calculations.  相似文献   

10.
 The crystal structure of a layered ternary carbide, Ti3(Si0.43Ge0.57)C2, was studied with single-crystal X-ray diffraction. The compound has a hexagonal symmetry with space group P63/mmc and unit-cell parameters a=3.0823(1) Å, c=17.7702(6) Å, and V=146.21(1) Å3. The Si and Ge atoms in the structure occupy the same crystallographic site surrounded by six Ti atoms at an average distance of 2.7219 Å, and the C atoms are octahedrally coordinated by two types of symmetrically distinct Ti atoms, with an average C-Ti distance of 2.1429 Å. The atomic displacement parameters for C and Ti are relatively isotropic, whereas those for A (=0.43Si+0.57Ge) are appreciably anisotropic, with U11 (=U22) being about three times greater than U33. Compared to Ti3SiC2, the substitution of Ge for Si results in an increase in both A-Ti and C-Ti bond distances. An electron density analysis based on the refined structure shows that each A atom is bonded to 6Ti atoms as well as to its 6 nearest neighbor A site atoms, whether the site is occupied by Si or Ge, suggesting that these bond paths may be significantly involved with electron transport properties.  相似文献   

11.
Carbon coatings were deposited by atmospheric plasma jet. Influence of the distance between the exit of the plasma gun and a substrate (consequently temperature of the substrate) on properties of the coatings was investigated. The coatings deposited near to the exit of the plasma gun are porous with columnar structure, moderate hardness (∼10 GPa), and the lowest hydrogen (∼7 at.%) concentration. The coatings deposited at the larger standoff distance (>5 mm) have higher hydrogen (≤25 at.%) content and graphite-like structure. Most of the hydrogen in all coatings is bonded to the sp3 carbon (70-60 at.%) and predominantly forms methylene compounds. Decrease of standoff distance yields lower concentration of sp3 CH3 compounds and relative increase of amount of hydrogenated sp2 rings.  相似文献   

12.
ZnO films prepared from the ZnO target containing 2% AlN are transparent irrespective of radio frequency (RF) power. The obtained ZnO films have the carrier density of 3.8 × 1020 cm−3 or less and the low mobility of 5.3-7.8 cm2/(V s). In the case of 5% AlN target, ZnO films prepared at 40, 60 and 80 W are transparent, whereas ZnO films prepared at 100 and 120 W are colored. As RF power increases from 40 to 120 W, the carrier density increases straightforwardly up to 5.5 × 1020 cm−3 at 100 W and is oppositely reduced to 3.2 × 1020 cm−3 at 120 W. In the case of 10% AlN target, ZnO films prepared at 60 W or more are colored, and have the carrier density of 4 × 1020 cm−3 or less. The N-concentration in these colored films is estimated to be 1% or less. The Al-concentration in the ZnO films prepared from the 5 and 10% AlN targets is higher than 2%. The carrier density of the ZnO films containing Al and N atoms is nearly equal to that of ZnO films doped with Al atoms alone. There is no evidence in supporting the enhancement of the carrier density via the formation of N-AlxZn4−x clusters (4 ≥ x ≥ 2).  相似文献   

13.
采用直流-射频等离子增强化学汽相沉积技术制备a-C∶H(N)薄膜,用X射线光电子能谱研究了混合气体中N2含量对薄膜成分与结构的影响.a-C∶H(N)薄膜中含氮量可达9.09%.对a-C∶H(N)薄膜的C1s和N1s结合能谱的分析表明a-C∶H(N)薄膜的结构是由C3N4相镶嵌在sp2键结合的CNx基体中组成.其中C3N4相中N和C原子比接近4∶3,不随薄  相似文献   

14.
The stoichiometry of B–C thin films was controlled via pulsed laser deposition using a series of ceramic B–C targets (B/C ratio was 3.04–5.92). The effects of B/C ratio in target, laser power and substrate-to-target distance on deposition rate, microstructure, stoichiometry and chemical structure were investigated. The maximum deposition rate was obtained at laser power of 90 mJ and substrate-to-target distance of 50 mm. Boron rich B–C films were obtained and the stoichiometry in B–C thin films was controlled in the range 2.9–4.6. Carbon atoms were bonded with only sp3 hybridization when boron was rich,but with sp2 and sp3 hybridizations when carbon was rich.  相似文献   

15.
In this work, the influence of cathodic (Red) and anodic (Ox) pre-treatment on boron doped diamond (BDD) films grown with different sp2/sp3 ratios was systematically studied. The sp2/sp3 ratios were controlled by the addition of CH4 of 1,3,5 and 7 sccm in the gas inlet during the growth process. The electrodes were treated in 0.5 mol L−1 H2SO4 at −3 and 3 V vs Ag/AgCl, respectively, for 30 min. The electrochemical response of BDD films was investigated using electrochemical impedance spectroscopy (EIS) and Mott–Schottky Plot (MSP) measurements. Four film sample sets were produced in a hot filament chemical vapor deposition reactor. During the growth process, an additional H2 line passing through a bubbler containing the B2O3 dissolved in methanol was used to carry the boron. The scanning electron microscopy morphology showed well faced films with a small decrease in their grain size as the CH4 concentration increased. The Raman spectra depicted a pronounced sp2 band, mainly for films with 5 and 7 sccm of CH4. MSP showed a decrease in the acceptor concentration as the CH4 increased indicating the CH4 influence on the doping process for Red–BDD and Ox–BDD samples. Nonetheless, an apparent increase in the acceptor concentrations for both Ox–BDD samples was observed compared to that for Red–BDD samples, mainly attributed to the surface conductive layer (SCL) formation after this strong oxidation process. The EIS Nyquist plots for Red–BDD showed a capacitance increase for the films with higher sp2 content (5 and 7 sccm). On the other hand, the Nyquist plots for Ox–BDD can be described as semicircles near the origin, at high frequencies, where their charge transfer resistance strongly varied with the sp2 increase in such films.  相似文献   

16.
Acetonitrile (CH3CN) adsorbs on Si(0 0 1)-2 × 1 at room temperature under two forms, a cycloaddition-like adduct (Si-CN-Si) and a pendent cyano (Si-CH2-CN) resulting from the decomposition of the molecule. Resonant Auger spectroscopy has been used to study the excited-state-dependent electron transfer from the N 1s core-excited molecular adsorbate to the silicon substrate, using the core-hole lifetime (∼6 fs) as an internal clock. It is shown that the πCN NEXAFS state lies within the silicon bandgap because of a core-excitonic effect. Therefore no charge transfer of the excited electron to the substrate is observed. On the other hand the πCN NEXAFS state is placed within the silicon conduction band. Excitation to this orbital leads to valence/Auger spectra in which both resonant and normal Auger contributions are observed. Therefore there is evidence for a charge transfer from the pendent CN to the silicon surface, on a timescale estimated to tens of femtoseconds.  相似文献   

17.
We have deposited germanium carbide (Ge1−xCx) films on Si(1 0 0) substrate via radio-frequency (RF) reactive magnetron sputtering in a CH4/Ar mixture discharge, and explored the effects of carbon content (x) on the chemical bonding and hardness for the obtained films. We find that x significantly influences the chemical bonding, which leads to a pronounced change in the hardness of the film. To reveal the relationship between the chemical bonding and hardness, first-principles calculations have been carried out. It is shown that as x increases from 0 to 0.33, the fraction of sp3 C-Ge bonds in the film increases at the expense of Ge-Ge bonds, which promotes formation of a strong covalently bonded network, and thus enhances the hardness of the film. However, as x further increases from 0.33 to 0.59, the fraction of sp3 C-Ge bonds in the film gradually reduces, while that of sp3 C-H and graphite-like sp2 C-C bonds increases, which damages the compact network structure, resulting in a sharp decrease in the hardness. This investigation suggests that the medium x (0.17<x<0.40) is most favorable to the preparation of hard Ge1−xCx films due to the formation of dominant sp3 C-Ge bonds.  相似文献   

18.
The surface modifications of tungsten massive samples (0.5 mm foils) made by nitrogen ion implantation are studied by SEM, XRD, AFM, and SIMS. Nitrogen ions in the energy range of 16-30 keV with a fluence of 1 × 1018 N+ cm−2 were implanted in tungsten samples for 1600 s at different temperatures. XRD patterns clearly showed WN2 (0 1 8) (rhombohedral) very close to W (2 0 0) line. Crystallite sizes (coherently diffracting domains) obtained from WN2 (0 1 8) line, showed an increase with substrate temperature. AFM images showed the formation of grains on W samples, which grew in size with temperature. Similar morphological changes to that has been observed for thin films by increasing substrate temperature (i.e., structure zone model (SZM)), is obtained. The surface roughness variation with temperature generally showed a decrease with increasing temperature. The density of implanted nitrogen ions and the depth of nitrogen ion implantation in W studied by SIMS showed a minimum for N+ density as well as a minimum for penetration depth of N+ ions in W at certain temperatures, which are both consistent with XRD results (i.e., IW (2 0 0)/IW (2 1 1)) for W (bcc). Hence, showing a correlation between XRD and SIMS results.  相似文献   

19.
The BCN thin films were produced by dual ion beam sputtering deposition (DIBSD). The influence of assisted ion energy on surface roughness and mechanical properties of BCN films were investigated. The surface roughness was determined by atomic force microscopy (AFM) and the mechanical properties of BCN firms were evaluated by nano-indentation in N2 gas. The composition, structure and chemical bonding of the BCN thin films were analyzed by using energy dispersive spectroscopy (EDS), transmission electron microscopy (TEM), laser Raman spectroscopy and Fourier transform infrared spectroscopy (FTIR). These films appeared as amorphous structure. As a result, the BCN films with the smoothest surface (Ra = 0.35 nm and Rp-v = 4.4 nm) and the highest nano-hardness of 30.1 GPa and elastic modulus of 232.6 GPa were obtained at 200 eV and 12 mA with N2:Ar = 1:1, and the chemical composition of this BCN film was 81 at.% B, 14 at.% C and 5 at.% N. Moreover, several bonding states such as B-N, B-C and C-N were observed in BCN thin films.  相似文献   

20.
The nanobaskets of SnO2 were grown on in-house fabricated anodized aluminum oxide pores of 80 nm diameter using plasma enhanced chemical vapor deposition at an RF power of 60 W. Hydrated stannic chloride was used as a precursor and O2 (20 sccm) as a reactant gas. The deposition was carried out from 350 to 500 °C at a pressure of 0.2 Torr for 15 min each. Deposition at 450 °C results in highly crystalline film with basket like (nanosized) structure. Further increase in the growth temperature (500 °C) results in the deterioration of the basket like structure and collapse of the alumina pores. The grown film is of tetragonal rutile structure grown along the [1 1 0] direction. The change in the film composition and bonded states with growth temperature was evident by the changes in the photoelectron peak intensities of the various constituents. In case of the film grown at 450 °C, Sn 3d5/2 is found built up of Sn4+ and O-Sn4+ and the peaks corresponding to Sn2+ and O-Sn2+ were not detected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号