首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Double layered manganite of La1.4Ca1.6Mn2O7 (DLCMO) was prepared using solid state reaction method and had a metal-insulator transition temperature (TMI) of 125 K. The short range 2D-feerromagnetic ordering (TC2) starts growing when T<168 K and it gets converted into 3D-ferromagnetic ordering (TC1) at 114 K. Low field magnetoresistance (MR) behaviour of the DLCMO was investigated and compared with an infinite layered manganite La0.7Ca0.3MnO3 (LCMO). For DLCMO, in the temperature range between TC1 and TC2, the MR showed a gradual increase with the magnetic field. The observed MR and R-T behaviour of double layered manganite for TC1<T<TC2 has been explained in the frame work of the two phase model [ferromagnetic (FM) domains and paramagnetic (PM) regions] and percolative behaviour of transport in FM-PM mixture.  相似文献   

2.
Temperature dependence of conduction noise and low field magnetoresistance of layered manganite La1.4Ca1.6Mn2O7 (DLCMO) are reported and compared with the infinite layered manganite La0.7Ca0.3MnO3 (LCMO). The double layered manganite was prepared using standard solid state reaction method and had a metal-insulator transition temperature (TM-I) of 155 K. The temperature dependence of susceptibility showed evolution of ferromagnetic ordering at 168 K. The observed voltage noise spectral density (SV) shows 1/fα type of behaviour at all temperatures from 77 K to 300 K. In the ferromagnetic region (T<168 K), SV/V2 shows two peaks at 164 K and 114 K. The observed two peaks in normalised conduction noise of DLCMO is attributed to the excess noise generated due to setting up of short range 2D-ferromagnetic ordering and long range 3D-ferromagnetic ordering at two different temperatures TC2 and TC1. In temperature range between TC1 and TC2, the magnetoresistance (MR) showed a gradual increase with the magnetic field. The observed MR has been explained in the framework of the two phase model [ferromagnetic (FM) domains and paramagnetic (PM) regions].  相似文献   

3.
The crystal structure and electromagnetic properties as well as thermal stability of the A-site ordered PrBaMn2O6 manganites have been investigated. These samples have been prepared by using ‘two-steps’ synthesis mode. They have tetragonal structure with no tilt of MnO6 octahedra and show ferromagnetic metal to paramagnetic semiconductor transition. The most significant structural feature of the A-site ordered manganites is that the MnO2 sublattice is sandwiched by two types of rock-salt layers PrO and BaO. The different degree of Pr and Ba ions in the A-sublattice is revealed. The A-site ordered PrBaMn2O6 sample with maximum degree of the A-site order demonstrates ferromagnetic metallic to paramagnetic insulating transition with the Curie point ∼320 K. The A-site disordered Pr0.50Ba0.50MnO3 sample is ferromagnetic metal below TC≈140 K. The cation order in these compounds is stable in air up to 1300 °C. For the partly A-site ordered samples the magnetic and electronic phase separation is observed. The magnetotransport properties of the A-site ordered manganites treated under different conditions are discussed in terms of the superexchange interactions and A-site order degree.  相似文献   

4.
The frequency dependence of the real (?′) and imaginary (?″) parts of the dielectric constant of polycrystalline hematite (α-Fe2O3) has been investigated in the frequency range 0-100 kHz and the temperature range 190-350 K, in order to reveal experimentally the electron hopping mechanism that takes place during the Morin transition of spin-flip process. The dielectric behaviour is described well by the Debye-type relaxation (α-dispersion) in the temperature regions T<233 K and T>338 K. In the intermediate temperature range 233 K<T<338 K a charge carrier mechanism takes place (electron jump from the O2− ion into one of the magnetic ions Fe3+) which gives rise to the low frequency conductivity and to the Ω-dispersion. The temperature dependence of relaxation time (τ) in the −ln τ vs 103/T plot shows two linear regions. In the first, T<238 K, τ increases with increasing T implying a negative activation energy −0.01 eV, and in the second region T>318 K τ decreases as the temperature increases implying a positive activation energy 0.12 eV. The total reorganization energy (0.12-0.01) 0.11 eV is in agreement with the adiabatic activation energy 0.11 eV given by an ab initio model in the literature. The temperature dependence of the phase shift in the frequencies 1, 5, 10 kHz applied shows clearly an average Morin temperature TMo=284±1 K that is higher than the value of 263 K corresponding to a single crystal due to the size and shape of material grains.  相似文献   

5.
The La1.32Sr1.68Mn2O7 layered manganite system has been studied by the low temperature electrical resistance and magnetoresistance under hydrostatic pressure up to 25 kbar. We have observe both, a Curie temperature (TC) and a metal-insulator transition (TMI) at 118 K in the ambient pressure. The applied pressure shifts the TMI to higher temperature values and induces a second metal-insulator transition (T2MI) at 90 K, in the temperature dependence of resistivity measurements. Also, the pressure suppresses the peak resistance abruptly at TC. When an external field of 5 T is applied, we have observed a large negative magnetoresistance of 300% at the transition temperature and a 128% at 4.5 K. However, the increased pressure decreases the magnetoresistance ratio gradually. When the pressure reaches its maximum available value of 25 kbar, the magnetoresistance ratio decreases at a rate of 1.3%/kbar. From our experimental results, the decrease of magnetoresistance ratio with pressure is explained by the pressure induced canted spin state which is not favor for the spin polarized intergrain tunneling in layered manganites.  相似文献   

6.
Lanthanum based mixed valence manganite system La1−xCax−0.08Sr0.04Ba0.04MnO3 (LCSBMO; x=0.15, 0.24 and 0.33) synthesized through the sol-gel route is systematically investigated in this paper. The electronic transport and magnetic susceptibility properties are analyzed and compared, apart from the study of unit cell structure, microstructure and composition. Second order phase transition is observed in all the samples and significant difference is observed between the insulator to metal transition temperature (TMI) and paramagnetic (PM) to ferromagnetic (FM) transition temperature (TC). In contrast to the insulating FM behaviour usually observed in La1−xCaxMnO3 (LCMO) for x=0.15, a clear insulator to metal transition is observed for LCSBMO for the same percentage of lanthanum. The temperature dependent resistivity of polycrystalline pellets, when obeying the well studied law ρ=ρo+ρ2T2 for T<TMI, is observed to differ significantly in the values of ρo and ρ2, with the electrical conductivity increasing with x. The variable range hopping model has been found to fit resistivity data better than the small polaron model for T>TMI. AC magnetic susceptibility study of the polycrystalline powders of the manganite system shows the highest PM to FM transition of 285 K for x=0.33.  相似文献   

7.
7Li- and 51V-NMR have been measured to make clear the electronic state in a two-dimensional triangular lattice LiVS2. Knight shift of both 7Li- and 51V-NMR is almost independent of temperature below the phase transition temperature Tc of about 310 K from the paramagnetic state to non-magnetic state. The 51V- spin-lattice relaxation rate 1/T1 reveals an exponential temperature dependence below Tc, indicating a gap structure of electronic state. These results are consistent with a non-magnetic state with a trimer singlet of V3+ spins below Tc.  相似文献   

8.
The magnetic and electrical properties of the Al-doped polycrystalline spinels ZnxCryAlzSe4 (0.13≤z≤0.55) with the antiferromagnetic (AFM) order and semiconducting behavior were investigated. A complex antiferromagnetic structure below a Néel temperature TN≈23 K for the samples with z up to 0.4 contrasting with the strong ferromagnetic (FM) interactions evidenced by a large positive Curie-Weiss temperature θCW decreasing from 62.2 K for z=0.13 to 37.5 K for z=0.55 was observed. Detailed investigations revealed a divergence between the zero-field-cooling (ZFC) and field-cooling (FC) susceptibilities at temperature less than TN suggesting bond frustration due to competing ferromagnetic and antiferromagnetic exchange interactions in the compositional range 0.13≤z≤0.4. Meanwhile, for z=0.55 a spin-glass-like behavior of cluster type with randomly oriented magnetic moments is observed as the ZFC-FC splitting goes up to the freezing temperature Tf=11.5 K and the critical fields connected both with a transformation of the antiferromagnetic spin spiral via conical magnetic structure into ferromagnetic phase disappear.  相似文献   

9.
The thermomagnetic behaviour (within the temperature range 553-300 K) for the bulk composite Nd60Fe30Al10 alloy is described in terms of a transition from paramagnetic to superferromagnetic state at T=553 K, followed by a ferromagnetic ordering for T<473 K. For the superferromagnetic regime, the alloy thermomagnetic response was associated to a homogeneous distribution of magnetic clusters with mean magnetic moment and size of 1072 μB and 2.5 nm, respectively. For T<473 K, a pinning model of domain walls described properly the alloy coercivity dependence with temperature, from which the domain wall width and the magnetic anisotropy constant were estimated as being of ≈8 nm and ≈105 J/m3, typical values of hard magnetic phases. Results are supported by microstructural and magnetic domain observations.  相似文献   

10.
Fabrication and characterization of magnetic Fe3O4-CNT composites   总被引:2,自引:0,他引:2  
Carbon nanotubes (CNTs) decorated with magnetite nanoparticles on their external surface have been fabricated by in situ solvothermal method, which was conducted in benzene at 500 °C with ferrocene and CNTs as starting reagents. The as-prepared composites were characterized using XRD, FTIR, SEM and TEM. It has been found that the amount of magnetite nanoparticles deposited on the CNTs can be controlled by adjusting the initial mass ratio of ferrocene to CNTs. The Fe3O4-CNT composites display good ferromagnetic property at room temperature, with a saturation magnetization value (Ms) of 32.5 emu g−1 and a coercivity (Hc) of 110 Oe.  相似文献   

11.
The effect of oxygen/cobalt off-stoichiometry upon magnetism in CaBaCo4O7 has been investigated. It is shown that the oxides CaBaCo4O7+δ and CaBaCo4−xO7−δ (0≤x≤0.20) synthesized below 1100 °C in air exhibit phase separation, where ferrimagnetic regions with TC~56 K to 64 K coexist with regions of magnetic clusters. The latter are detected from ac-susceptibility measurements, which show various frequency dependent peaks at ~14–20 K, 37 K, and 45 K, depending on the stoichiometry. The origin of this phenomenon is attributed to the great sensitivity of the material to oxidation as the synthesis of temperature is lowered, leading to the introduction of additional Co3+ cations, with respect to the ideal formula CaBaCo22+Co23+O7. This excess Co3+ tends to destroy the ferromagnetic zig-zag chains of the ferrimagnetic structure and creates various cobalt spin clusters, leading to the inherent phase separation in the samples.  相似文献   

12.
The single crystal of Sb3+ and V3+ doped zinc chromium selenide spinel ZnCr2Se4 were prepared by a chemical transport method and characterized by ESR spectroscopy in order to examine the effect of nonmagnetic antimony and magnetic vanadium on properties of the system. For antimony admixtures the Neel temperature is very similar to that of the parent spinel ZnCr2Se4 (22 K). However, upon incorporating vanadium ions, the TN temperature decreases down to 17.5 K, determined for the maximum vanadium content (x=0.06). The temperature dependence of the ESR linewidth over paramagnetic region is interpreted by an occurrence of spin-phonon interaction. The strong broadening linewidth together with its strong temperature dependence for vanadium doped ZnCr2Se4 is explained by the complex paramagnetic relaxation model.  相似文献   

13.
Magnetization and susceptibility were investigated as a function of temperature and magnetic field in polycrystalline Mn[Cr0.5Ga1.5]S4 spinel. The dc susceptibility measurements at 919 Oe showed a disordered ferrimagnetic behaviour with a Curie-Weiss temperature θCW=−55 K and an effective magnetic moment of 5.96 μB close to the spin-only value of 6.52 μB for Cr3+ and Mn2+ ions in the 3d3 and 3d5 configurations, respectively. The magnetization measured at 100 Oe revealed the multiple magnetic transitions with a sharp maximum at the Néel temperature TN=3.9 K, a minimum at the Yafet-Kittel temperature TYK=5 K, a broad maximum at the freezing temperature Tf=7.9 K, and an inflection point at the Curie temperature TC=48 K indicating a transition to paramagnetic phase. A large splitting between the zero-field-cooled (ZFC) and field-cooled (FC) magnetizations at a temperature smaller than TC suggests the presence of spin-glass-like behaviour. This behaviour is considered in a framework of competing interactions between the antiferromagnetic ordering of the A(Mn) sublattice and the ferromagnetic ordering of the B(Cr) sublattice.  相似文献   

14.
We have thoroughly investigated the entire magnetic states of under-doped ferromagnetic-insulating manganite Nd0.8Sr0.2MnO3 through temperature-dependent linear and non-linear complex ac magnetic susceptibility measurements. This ferromagnetic-insulating manganite is found to have frequency-independent ferromagnetic to paramagnetic transition temperature at around 140 K. At around 90 K (≈T?) the sample shows a second frequency-dependent re-entrant magnetic transition as explored through complex ac susceptibility measurements. Non-linear ac susceptibility measurements (higher harmonics of ac susceptibility) have also been performed (with and without the superposition of a dc magnetic field) to further investigate the origin of this frequency dependence (dynamic behavior at this re-entrant magnetic transition). Divergence of 3rd harmonic of ac susceptibility in the limit of zero exciting field indicates a spin-glass-like freezing phenomena. However, large value of spin-relaxation time (τ0=10−8 s) and small value of coercivity (∼22 Oe) obtained at low temperature (below T?) from critical slowing down model and dc magnetic measurements, respectively, are in contrast with what generally observed in a canonical spin glass (τ0=10−12-10−14 s and very large value of coercivity below freezing temperature). We have attributed our observation to the formation of finite size ferromagnetic clusters which are formed as consequence of intrinsic phase separation and undergo cluster glass-like freezing below certain temperature in this under-doped manganite. The results are supported by the electronic- and magneto-transport data.  相似文献   

15.
La0.67Ca0.33MnO3 (LCMO) and Ag admixed La0.67Ca0.33MnO3 (Ag-LCMO) polycrystalline films have been prepared on SrTiO3 single crystal (100) substrates by ultrasonic spray pyrolysis technique. These films are characterized using XRD, SEM, and temperature dependence of resistivity (ρ-T) and ac susceptibility (χ-T). The films are having cubic structure with lattice parameters as 3.890 and 3.885 Å for LCMO and Ag-LCMO films, respectively. The peek in ρ-T curve (Tp) and the ferromagnetic transition temperature (TC) for the Ag-LCMO film is higher than that of LCMO film. The stability of both the films was tested by repeated measurements of its characteristics over a period of one week after several thermal cycling from room temperature to 77 K. In the LCMO film, the peak in the ρ-T curve (Tp) is found to shift towards lower value and conduction noise of the film increases in the subsequent measurements. In the case of Ag-LCMO the value of Tp, TC and conduction noise of the film did not change even after several measurements. Silver segregating at the grain boundaries in Ag-LCMO polycrystalline film seems to be responsible for improving the characteristics of Ag-LCMO films.  相似文献   

16.
Electrical conductivity and magnetoresistance of a series of monovalent (K) doped La1−xKxMnO3 polycrystalline pellets prepared by pyrophoric method have been reported. K doping increases the conductivity as well as the Curie temperature (TC) of the system. Curie temperature increases from 260 to 309 K with increasing K content. Above the metal-insulator transition temperature (T>TMI), the electrical resistivity is dominated by adiabatic polaronic model, while in the ferromagnetic region (50<T<TMI), the resistivity is governed by several electron scattering processes. Based on a scenario that the doped manganites consist of phase separated ferromagnetic metallic and paramagnetic insulating regions, all the features of the temperature variation of the resistivity between ∼50 and 300 K are described very well by a single expression. All the K doped samples clearly display the existence of strongly field dependent resistivity minimum close to ∼30 K. Charge carrier tunneling between antiferromagnetically coupled grains explains fairly well the resistivity minimum in monovalent (K) doped lanthanum manganites. Field dependence of magnetoresistance at various temperatures below TC is accounted fairly well by a phenomenological model based on spin polarized tunneling at the grain boundaries. The contributions from the intrinsic part arising from DE mechanism, as well as, the part originating from intergrannular spin polarized tunneling are also estimated.  相似文献   

17.
Electrical and magnetic properties of the perovskite-type solid solution YCoxMn1−xO3 (x=0.20-0.60) have been studied at different temperatures and magnetic fields. Electrical conductivity measurements show a semi-conducting behaviour throughout the solid solution. The room-temperature conductivity increases with the Co content up to 33 at.%, and then decreases. The effective moment in the paramagnetic state shows a non-monotonic decrease, when the Co content increases. In the ordered state, the behaviour at low or null magnetic fields corresponds to a spin-glass or antiferromagnetic system, with a transition temperature, which raises with the Co content (up to 50 at.% Co), and then decreases. At high fields, all the solid solutions show a ferromagnetic behaviour, although there is a marked difference in their ferromagnetic cycles, at a threshold value of 33 at.% Co.  相似文献   

18.
The magnetic, magnetocaloric, and magnetotransport properties of RCo1.8Mn0.2 (R=Er, Ho, Dy, and Tb) were studied by room temperature X-ray diffraction, magnetization, and resistivity measurements at a temperature interval of 5-400 K and magnetic fields up to 5 T. The Curie temperature of RCo2 was found to increase significantly when 10% Mn was substituted for Co. The effective paramagnetic moments were found to be in reasonable agreement with their theoretical values. A large magnetoresistance (MR) of Δρ/ρo≈−13.5% for R=Ho at T≈153 K for ΔH=5 T has been observed. The maximum relative cooling capacities vary from 467 J/kg at low temperature for R=Er to 202 J/kg at the near room temperature for R=Tb.  相似文献   

19.
Magnetic susceptibility χ measurements in the range from 2 to 300 K were carried out on samples of the Cu2FeSnSe4 and Cu2MnSnSe4 compounds. It was found that Cu2FeSnSe4 was antiferromagnetic showing ideal Curie-Weiss behavior with a Néel temperature TN of about 19 K and Curie-Weiss temperature θ=−200 K, while for Cu2MnSnSe4 the behavior was spin-glass with a freezing temperature Tf of about 22 K and Curie-Weiss temperature θ=−25 K. The spin-glass order parameter q(T), determined from the susceptibility data, was found to be in agreement with the prediction of conventional spin-glass theory.  相似文献   

20.
Gold-coated nanoparticles of Fe20Ni80 (permalloy) have been synthesized by a microemulsion process. The as-prepared samples consist of ∼5 nm diameter particles of amorphous Fe20Ni80 that are likely encapsulated in B2O3. One or more Fe20Ni80@B2O3 particles are subsequently encapsulated in 8-20 nm gold nanospheres, as determined by TEM and X-ray powder diffraction (XRD) line broadening. The gold shells were found to be under expansive strain. Magnetic data confirm the existence of a superparamagnetic phase with a blocking temperature, TB, of ∼33 K. The saturation magnetization, MS, of the as-prepared, Au-coated sample is ∼65 emu g−1 at 5 K and ∼16 emu g−1 at 300 K. The coercivity, HC, is ∼280 Oe at 5 K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号