首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To further improve the electrochemical performance of LiFePO4/C, Nd doping has been adopted for cathode material of the lithium ion batteries. The Nd-doped LiFePO4/C cathode was synthesized by a novel solid-state reaction method at 750 °C without using inert gas. The Li0.99Nd0.01FePO4/C composite has been systematically characterized by X-ray diffraction, EDS, SEM, TEM, charge/discharge test, electrochemical impedance spectroscopy and cyclic stability. The results indicate that the prepared sample has olivine structure and the Nd3+ and carbon modification do not affect the structure of the sample but improve its kinetics in terms of discharge capacity and rate capability. The Li0.99Nd0.01FePO4/C powder exhibited a specific initial discharge capacity of about 161 mAh g− 1 at 0.1 C rate, as compared to 143 mAh g− 1 of LiFePO4/C. At a high rate of 2 C, the discharge capacity of Li0.99Nd0.01FePO4/C still attained to 115 mAh g− 1 at the end of 20 cycles. EIS results indicate that the charge transfer resistance of LiFePO4/C decreases greatly after Nd doping.  相似文献   

2.
Spherical LiFePO4/C powders were synthesized by the conventional solid-state reaction method via Ni doping. Low-cost asphalt was used as both the reduction agent and the carbon source. An Ni-doped spherical LiFePO4/C composite exhibited better electrochemical performances compared to an un-doped one. It presented an initial discharge capacity of 161 mAhg−1 at 0.1 C rate (the theoretical capacity of LiFePO4 with 5 wt% carbon is about 161 mAhg−1). After 50 cycles at 0.5 C rate, its capacity remained 137 mAhg−1 (100% of the initial capacity) compared to 115 mAhg−1 (92% of the initial capacity) for an un-doped one. The electrochemical impedance spectroscopy analysis and cyclic voltammograms results revealed that Ni doping could decrease the resistance of LiFePO4/C composite electrode drastically and improve its reversibility.  相似文献   

3.
Triclinic LiVPO4F/C composite materials were prepared from a sucrose-containing precursor by one-step heat treatment. As-prepared composites were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and electrochemical measurements. XRD studies showed that Li3PO4 impurity phase appeared in the sample synthesized at 600 °C and pure LiVPO4F samples could be obtained when the sintered temperature was higher than 650 °C. The sample synthesized at 650 °C presents the highest initial discharge capacity of 132 mAh g−1 at 0.2 C rate, and exhibited better cycling stability (124 mAh g−1 at 50th cycle at 0.2 C rate) and better rate capability (100 mAh g−1 at 50th cycle under 1 C rate) in the voltage range 3.0-4.4 V.  相似文献   

4.
LiFePO4/C composite is one of ways to surmount the lower electrical conductivity of LiFePO4. In this paper, we suggest a new type of LiFePO4/C composite in which amorphous nano-carbon webs are wrapping and connecting LiFePO4 particles. This type of composite was obtained by adapting a new liquid-based powder preparation method, that is, all raw materials (LiFePO4 and carbon precursor materials) were dissolved in liquid and solidified. This composite was very effective in enhancing the electrochemical properties such as capacity and rate capability. Even as high as at 400 m Ag−1 current density, a capacity of about 105 m Ahg−1 was obtained at 25 °C.  相似文献   

5.
α-Fe2O3/MWCNTs composites were prepared by a simple hydrothermal process. The crystalline structure and the electrochemical performance of the as-synthesized samples were investigated. Results show that as anode materials for lithium-ion batteries, the α-Fe2O3/MWCNTs exhibit an initial discharge capacity of 1256 ± 5 mAh g−1 and a stable specific discharge capacity of 430 ± 5 mAh g−1 at ambient temperature, for up to 100 cycles with no noticeable capacity fading, while the initial discharge capacity of the bare Fe2O3 is 992.3 mAh g−1, and the discharge capacity is 146.6 mAh g−1 after 100 cycles. Moreover, the α-Fe2O3/MWCNTs composites also exhibit excellent rate performance.  相似文献   

6.
A cathode material of an electrically conducting carbon–LiFePO4 nanocomposite is synthesized by wet ball milling and spray drying of precursor powders prior to a solid-state reaction. The structural characterization shows that the composite is composed of LiFePO4 crystals and 4.8 wt.% amorphous carbon. Galvanostatic charge/discharge measurements indicate that the composite exhibits a superior high energy and high cycling stability. This composite delivers a discharge capacity of 159.1 mAh g−1 at 0.1 C, 150.8 mAh g−1 at 1 C, and 140.1 mAh g−1 at 2 C rate. The capacity retention of 99% is achieved after 200 cycles at 2 C. The 18,650 cylindrical batteries are assembled using the composite as cathode materials and demonstrate the capacity of 1,400 mAh and the capacity retention of 97% after 100 cycles at 1 C. These results reveal that the as-prepared LiFePO4–carbon composite is one of the promising cathode materials for high-performance, advanced lithium-ion batteries directed to the hybrid electric vehicle and pure electric vehicle markets.  相似文献   

7.
Polycrystalline thin films of Fe3−xZnxO4 (x = 0.0, 0.01 and 0.02) were prepared by pulsed-laser deposition technique on Si (1 1 1) substrate. X-ray diffraction studies of parent as well as Zn doped magnetite show the spinel cubic structure of film with (1 1 1) orientation. The order–disorder transition temperature for Fe3O4 thin film with thickness of 150 nm are at 123 K (Si). Zn doping leads to enhancement of resistivity by Zn2+ substitution originates from a decrease of the carrier concentration, which do not show the Verwey transition. The Raman spectra for parent Fe3O4 on Si (1 1 1) substrate shows all Raman active modes for thin films at energies of T2g1, T2g3, T2g2, and A1g at 193, 304, 531 and 668 cm−1. It is noticed that the frequency positions of the strongest A1g mode are at 668.3 cm−1, for all parent Fe3O4 thin film shifted at lower wave number as 663.7 for Fe2.98Zn0.02O4 thin film on Si (1 1 1) substrate. The integral intensity at 668 cm−1 increased significantly with decreasing doping concentration and highest for the parent sample, which is due to residual stress stored in the surface.  相似文献   

8.
A novel silicon-based glassy composite anode material with high initial coulombic efficiency and long cycling performance for lithium-ion batteries was synthesized by a wet mechanochemical reduction method. The in situ formed Si particles with size of 5-10 nm were uniformly distributed in the glassy matrices formed by B2O3 and P2O5. The as-prepared composite electrode revealed an initial charge and discharge capacity of 432.7 and 514.4 mAh g− 1, respectively, with an initial coulombic efficiency of 84%. After 100 cycles, the reversible capacity retention rate was still up to 97%, meaning a favorable cycling stability.  相似文献   

9.
Among the several materials under development for use as a cathodes in lithium-ion batteries olivine-type LiFePO4 is one of the most promising cathode material. However, its poor conductivity and low lithium-ion diffusion limits its practical application. In this study, we report seven different carboxylic acids used to synthesize LiFePO4/C composite, and influences of carbon sources on electrochemical performance were intensively studied. The structure and electrochemical properties of the LiFePO4/C were characterized by X-ray diffraction, scanning electron microscopy, electrical conductivity, and galvanostatic charge–discharge measurements. Among the materials studied, the sample E with tartaric acid as carbon source exhibited the best cell performance with a maximum discharge capacity of 160 mAh g−1 at a 0.1 C-rate. The improved electrochemical properties were attributed to the reduced particle size and enhanced electrical contacts by carbon.  相似文献   

10.
The olivine-type LiFe1-x Y x PO4/C (x?=?0, 0.01, 0.02, 0.03, 0.04, 0.05) products were prepared through liquid-phase precipitation reaction combined with the high-temperature solid-state method. The structure, morphology, and electrochemical performance of the samples were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM), energy-dispersive spectroscopy (EDS), galvanostatic charge-discharge, cyclic voltammetry, and electrochemical impedance spectroscopy (EIS). We found that the small amount of Y3+ ion-doped can keep the microstructure of LiFePO4, modify the particle morphology, decrease charge transfer resistance, and enhance exchange current density, thus enhance the electrochemical performance of the LiFePO4/C. However, the large doping content of Y3+ ion cannot be completely doped into LiFePO4 lattice, but existing partly in the form of YPO4. The electrochemical performance of LiFePO4/C was restricted owing to YPO4. Among all the doped samples, LiFe0.98Y0.02PO4/C showed the best electrochemical performance. The LiFe0.98Y0.02PO4/C sample exhibited the initial discharge capacity of 166.7, 155.8, 148.2, 139.8, and 121.1 mAh g?1 at a rate of 0.2, 0.5, 1, 2, and 5 C, respectively. And, the discharge capacity of the material was 119.6 mAh g?1 after 100 cycles at 5 C rates.  相似文献   

11.
Porous LiNi0.75Co0.25O2 microspheres are successfully prepared by a simple hydrothermal process by using H[Ni0.75Co0.25OOH]3 and LiOH as starting materials in the presence of urea for the first time. The synthesized samples are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), specific surface area (SBET), and electrochemical performance. The synthesized LiNi0.75Co0.25O2 has a good electrochemical performance with an initial discharge capacity of 169.3 mA g−1 and good capacity retention of 96.7% after 50 cycles at 0.2 C (25 mA g−1). The electrochemical lithium ion insertion/extraction process is quite reversible even at 5 C. Furthermore, the structure in the charge-discharge process is stable and the impedance increased slowly during cycling.  相似文献   

12.
Spinel compounds Li4Ti5−xAlxO12/C (x=0, 0.05) were synthesized via solid state reaction in an Ar atmosphere, and the electrochemical properties were investigated by means of electronic conductivity, cyclic voltammetry, and charge-discharge tests at different discharge voltage ranges (0-2.5 V and 1-2.5 V). The results indicated that Al3+ doping of the compound did not affect the spinel structure but considerably improved the initial capacity and cycling performance, implying the spinel structure of Li4Ti5O12 was more stable when Ti4+ was substituted by Al3+, and Al3+ doping was beneficial to the reversible intercalation and deintercalation of Li+. Al3+ doping improved the reversible capacity and cycling performance effectively especially when it was discharged to 0 V.  相似文献   

13.
LiMnO2 and 0.23Li2MnO3·0.77LiMnO2 were prepared by a convenient one-step solid-state reaction from MnO2 using glucose as organic carbon resource. The crystal structure and morphology of the as-prepared materials was examined by X-ray powder diffraction and field emission scanning electron microscopy, respectively. The ration of Li to Mn was determined by means of atomic absorption spectrometry and the Li/Mn molar ratio in the products was 1.23. The electrochemical properties were investigated by charge-discharge test and electrochemical impedance measurements. The prepared composite material presented an initial discharge capacity of 45 mAh g-1 and a good cycling performance with reversible capacity of 218 mAh g-1 after 30 cycles. On the basis of the experimental results, the discharge efficiency of this composite material more than 100% was also discussed.  相似文献   

14.
Investigation on a new electrospun gel polymer electrolyte consisting of thermoplastic polyurethane (TPU) and poly(vinylidene fluoride) (PVdF) has been made. Its characteristics were investigated by scanning electron microscopy, FT-IR, Differential Scanning Calorimeter (DSC) analysis. This kind of gel polymer electrolyte had a high ionic conductivity about 3.2 × 10− 3 S cm− 1 at room temperature, and exhibited a high electrochemical stability up to 5.0 V versus Li+/Li, good mechanical strength and stability to allow safe operation in rechargeable lithium-ion polymer batteries. A Li/GPE/LiFePO4 cell delivered a high discharge capacity when it was evaluated at 0.1 °C—rate at 25 °C (167.8 mAh g− 1). And a very stable cycle performance also existed under this low current density.  相似文献   

15.
Ultrafine Ce1−xNdxO2−δ (x=0-0.25) powders were synthesized by self-propagating room temperature synthesis. Raman spectra were measured at room temperature in the 300-700 cm−1 spectral range. The shift and asymmetric broadening of the Raman F2g mode at about 454 cm−1 in pure and doped ceria samples could be explained with combined size and inhomogenous strain effects. Increased concentration of O2− vacancies with doping is followed by an appearance of new Raman feature at about 545 cm−1.  相似文献   

16.
Fuwei Mao  Dongchen Wu  Zhufa Zhou  Shumei Wang 《Ionics》2014,20(12):1665-1669
In this study, LiFe1???3x/2Bi x PO4/C cathode material was synthesized by sol–gel method. From XRD patterns, it was found that the Bi-doped LiFePO4/C cathode material had the same olivine structure with LiFePO4/C. SEM studies revealed that Bi doping can effectively decrease the particle sizes. It shortened Li+ diffusion distance between LiFePO4 phase and FePO4 phase. The LiFe0.94Bi0.04PO4/C powder exhibited a specific initial discharge capacity of about 149.6 mAh g?1 at 0.1 rate as compared to 123.5 mAh g?1 of LiFePO4/C. EIS results indicated that the charge-transfer resistance of LiFePO4/C decreased greatly after Bi doping.  相似文献   

17.
Spinel LiMn2O4 and LiMn1.4Cr0.2Ni0.4O4 cathode materials were successfully synthesized by the citric-acid-assisted sol-gel method with ultrasonic irradiation stirring. The structure and electrochemical performance of the as-prepared powders were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray (EDX) spectrometer, cyclic voltamogram (CV) and the galvanostatic charge-discharge test in detail. XRD shows that all the samples have high phase purity, and the powders are well crystallized. SEM exhibits that LiMn1.4Cr0.2Ni0.4O4 has more uniform cubic-structure morphology than that of LiMn2O4. EDX reveals that a small amount of Mn3+ still exists in LiMn1.4Cr0.2Ni0.4O4. The galvanostatic charge-discharge test indicates that the initial discharge capacities for the LiMn1.4Cr0.2Ni0.4O4 and LiMn2O4 at 0.15 C discharge rates are 130.8 and 130.2 mAh g−1, respectively. After 50 cycles, their capacity are 94.1% and 85.1%, respectively. The CV curve implies that Ni and Cr dual substitutions are beneficial to the reversible intercalation and deintercalation of Li+, and suppress Mn3+ generation at high temperatures and provide improved structural stability.  相似文献   

18.
The olivine-type LiFePO4/C cathode materials were prepared via carbothermal reduction method using cheap Fe2O3 as raw material and different contents of glucose as the reducing agent and carbon source. Their structural and morphological properties were investigated by X-ray diffraction, scanning electron microscope, transmission electron microscope, and particle size distribution analysis. The results demonstrated that when the content of the carbon precursor of glucose was 16 wt.%, the synthesized powder had good crystalline and exhibited homogeneous and narrow particle size distribution. Even and thin coating carbon film was formed on the surface of LiFePO4 particles during the pyrolysis of glucose, resulting in the enhancement of the electronic conductivity. Electrochemical tests showed that the discharge capacity first increased and then decreased with the increase of glucose content. The optimal sample synthesized using 16 wt.% glucose as carbon source exhibited the highest discharge capacity of 142 mAh g−1 at 0.1C rate with the capacity retention rate of 90.4% and 118 mAh g−1 at 0.5C rate.  相似文献   

19.
Three activated carbons (ACs) for the electrodes of supercapacitor were prepared from cationic starch using KOH, ZnCl2 and ZnCl2/CO2 activation. The BET surface area, pore volume and pore size distribution of the ACs were evaluated using density functional theory method, based on N2 adsorption isotherms at 77 K. The surface morphology was characterized with SEM. Their electrochemical performance in prototype capacitors was determined by galvanostatic charge/discharge characteristics and cyclic voltammetry, and compared with that of a commercial AC, which was especially prepared for use in supercapacitors. The KOH-activated starch AC presented higher BET surface area (3332 m2 g−1) and larger pore volume (1.585 cm3 g−1) than those of the others, and had a different surface morphology. When used for the electrodes of supercapacitors, it exhibited excellent capacitance characteristics in 30 wt% KOH aqueous electrolytes and showed a high specific capacitance of 238 F g−1 at 370 mA g−1, which was nearly twice that of the commercial AC.  相似文献   

20.
Mg-doping effects on the electrochemical property of LiFePO4–Li3V2(PO4)3 composite materials, a mutual-doping system, are investigated. X-ray diffraction study indicates that Mg doping decreases the cell volume of LiFePO4 in the composite. The cyclic voltammograms reveal that the reversibility of the electrode reaction and the diffusion of lithium ion is enhanced by Mg doping. Mg doping also improves the conductivity and rate capacity of 7LiFePO4–Li3V2(PO4)3 composite material and decreases the polarization of the electrode reaction. The discharge capacity of the Mg-doped composite was 93 mAh?g?1 at the current density of 1,500 mA?g?1, and Mg-doped composite has better discharge performance than the original 7LiFePO4–Li3V2(PO4)3 composite at low temperature, too. At ?30 °C, the discharge capacity of Mg-doped LFVP is 89 mAh?g?1, higher than that of the original composite. Electrochemical impedance spectroscopy study shows that Mg2+ doping could enhance the electrochemical activity of 7LiFePO4–Li3V2(PO4)3 composite. Mg doping has a positive influence on the electrochemical performance of the LiFePO4–Li3V2(PO4)3 composite material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号