首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nanostructured BaAl12O19:Mn2+ phosphor particles of nano-rod morphology with diameter 40-100 nm and length up to 200-600 nm has been synthesized by solution combustion method and its photoluminescence characteristics have been studied by Vacuum Ultra-Violet Photoluminescence spectrometer (VUVPL) under 147 nm excitation. The crystallographic phase purity of BaAl12O19:Mn2+ nanostructured phosphor particle synthesized by solution combustion approach is confirmed by X-ray diffraction (XRD). The broadening of XRD diffraction peaks indicates nanocrystalline nature of particles present in powder. The emission spectrum of BaAl12O19:Mn2+ nanophosphor on 147 nm excitation consists of a wide green band with a peak at about 515 nm, which is due to a 3d5 (4T1g)-3d5 (6A1g) transition corresponds of Mn2+ ions. It is found that the concentration quenching is obtained when Mn2+ content (x) is 0.05 in BaAl12O19:xMn2+ nanophosphor on 147 nm excitation. The decay time of 3d5 (4T1 g)-3d5 (6A1 g) transition of Mn2+ ions at 147 nm excitation is about 23 ms for BaAl12O19:Mn2+ nanophosphor. This nanostructured green emitting BaAl12O19:Mn2+ phosphor can find potential application in Plasma Display Panels (PDPs) and mercury-free fluorescent lamps.  相似文献   

2.
Detailed study of dependence of the crystal field strength 10Dq and lowest charge transfer (CT) energies for different interionic distances in Cs2GeF6:Mn4+ and Cs2GeF6:Os4+crystals is presented. The calculations were performed using the first-principles discrete-variational Dirac-Slater (DV-DS) method. As a result, the functional dependencies of 10Dq and lowest CT energy on the metal-ligand distance R were obtained without any fitting or semiempirical parameters. It was shown that 10Dq depends on R as 1/Rn, with n=4.0612 and 4.3874 for Cs2GeF6:Mn4+ and Cs2GeF6:Os4+, respectively. Two approximations (linear and quadratic) are obtained for the dependence of the lowest CT energy on R; CT energy decreases when R increases with dE(CT)/dR=−638 and −1080 cm−1/pm for Cs2GeF6:Mn4+ and Cs2GeF6:Os4+, respectively, if the linear approximation is used. These values can be used for estimations of the lowest CT energies for Mn4+ and Os4+ ions in other hosts with fluorine ligands. Estimations of the electron-vibrational interaction (EVI) constants, Huang-Rhys parameters, and Stokes shifts for all the above-mentioned crystals were performed using the obtained 10Dq and E(CT) functions.  相似文献   

3.
Alkaline hexafluorostantanate red phosphors Na2SnF6:Mn4+ and Cs2SnF6:Mn4+ are synthesized by chemical reaction in HF/NaMnO4 (CsMnO4)/H2O2/H2O mixed solutions immersed with tin metal. X-ray diffraction patterns suggest that the synthesized phosphors have a tetragonal symmetry with the space group D4h14 (Na2SnF6:Mn4+) and a trigonal symmetry with the space group D3d3 (Cs2SnF6:Mn4+). Photoluminescence (PL) analysis, PL excitation (PLE) spectroscopy, and the Raman scattering techniques are used to investigate the optical properties of the phosphors. The Franck-Condon analysis of the PLE data yields the Mn4+-related optical transitions to occur at ∼2.39 and ∼2.38 eV (4A2g4T2g) and at ∼2.83 and ∼2.76 eV (4A2g4T1g) for Na2SnF6:Mn4+ and Cs2SnF6:Mn4+, respectively. The crystal field parameters (Dq) of the Mn4+ ions in the Na2SnF6 and Cs2SnF6 hosts are determined to be ∼1930 and ∼1920 cm−1, respectively. Temperature-dependent PL measurements are performed from 20 to 440 K in steps of 10 K, and the obtained results are interpreted by taking into account the Bose-Einstein occupation factor. Comprehensive discussion is given on the phosphorescent properties of a family of Mn4+-activated alkaline hexafluoride salts.  相似文献   

4.
The ZnGa2O4:Mn2+, Cr3+ phosphors show three colors; the blue band of 380 nm from the charge transfer between Ga-O, the green band of 505 nm from Mn2+ and the red band of 705 nm from Cr3+. As a variation of Mn2+ or Cr3+ concentrations in ZnGa2O4:Mn2+, Cr3+, the relative emission intensity can be tuned. This phenomenon is explained in terms of the energy transfer based on four factors: the spectral overlap between the energy donors (Ga-O) and the energy accepters of Mn2+ or Cr3+, the absorption cross section of the energy accepters, the distance between them, and the decay time of the energy donors. ZnGa2O4:0.0025Mn2+, 0.010Cr3+ shows the CIE coordinates of x=0.4014, y=0.3368, which is a pure white light. The single-phased full-color emitting ZnGa2O4:Mn2+, Cr3+ phosphors can be applied to illumination devices.  相似文献   

5.
Multi-color long lasting phosphorescent (LLP) phenomenon in β-Zn3(PO4)2:Mn2+,Zr4+ was systematically investigated. It is found that the red (λEm=616 nm) LLP performance of Mn2+ such as brightness and duration is largely improved, and that the blue (λEm=475 nm) LLP of Zr4+ with lower intensity appears when Zr4+ ions are co-doped into the matrix. The fluorescence, phosphorescence and thermoluminescence (TL) spectra show that Mn2+ ion is solely expected as a luminescent center, while Zr4+ ion not only acts as a luminescent center, but also induces an electron trap (TrapZr) associated with a TL peak at 344 K. The trap depth for TrapZr is 0.25 eV, while that for the intrinsic trap is 0.38 eV, associated with a dominant peak at 385 K for Zn3(PO4)2:Mn2+. The Zr4+-induced trap with suitable depth is responsible for the improvement of the red LLP of Mn2+ ion and the appearance of the blue LLP of Zr4+ ion. The LLP mechanism is also investigated.  相似文献   

6.
杨子元  郝跃 《物理学报》2005,54(6):2883-2892
基于完全对角化方法,研究了4B1(3d3)态 离子在四角对称晶场中的磁相互作用,分析了自旋哈密顿参量(b02, g, g, Δg)的微观起源.结果表明 :在被考虑的大部分晶场区域,人们通常考虑的SO(spin-orbit)磁相互作用的贡献最为重要 ;然而,对于零场分裂参量b02而言,来自其他机理(包 括SS(spin-orbit),SOO(sp in-other-orbit),SO-SS-SOO)的贡献在大部分晶场区域超过了20%;在部分晶场区域,其 他机理的贡献甚至超过SO机理的贡献.详细地分析了Macfarlane 零场分裂参量b02 近似三阶微扰理论的收敛性,结果表明:该理论在大部分晶场区域收敛性较差.讨论了3d3态离子第一激发态2Eg分裂的微观起源.并利用 群论方法解 释了在C4v和C3v对称晶场中2Eg< /sub>态分裂的不同机理. 关键词: 4B1(3d3)态离子')" href="#">4B1(3d3)态离子 磁相互作用 自旋哈密 顿参量 完全对角化方法(CDM) 微扰理论方法(PTM)  相似文献   

7.
Complex magnetic, magnetoelectric and magnetoelastic studies of spontaneous and field-induced phase transitions in TmMn2O5 were carried out. In the vicinity of spontaneous phase transition temperatures (35 and 25 K) the magnetoelectric and magnetoelastic dependences demonstrated the jumps of polarization and magnetostriction induced by the field ∼150 kOe. These anomalies can be attributed to the influence of magnetic field on the conditions of incommensurate-commensurate phase transition at 35 K and the reverse one at 25 K. In b-axis dependences the magnetic field-induced spin-reorientation phase transition was also observed below 20 K. Finally the magnetoelectric anomaly associated with metamagnetic transition is observed below the temperature of rare-earth subsystem ordering at relatively small critical fields of 5 kOe. This variety of spontaneous and induced phase transitions in RMn2O5 stems from the interplay of three magnetic subsystems: Mn3+, Mn4+, R3+. The comparison with YMn2O5 highlights the role of rare earth in low-temperature region (metamagnetic and spin-reorientation phase transitions), while the phase transition at higher temperatures between incommensurate and commensurate phases should be ascribed to the different temperature dependences of Mn3+ and Mn4+ ions. The strong correlation of magnetoelastic and magnetoelectric properties observed in the whole class of RMn2O5 highlights their multiferroic nature.  相似文献   

8.
The investigation of the manganites La2/3−xPrxSr1/3MnO3, La2/3Sr1/3−xCaxMnO3 and La2/3+xCa1/3−2xAgxMnO3, which all exhibit Mn3+:Mn4+=2, shows that it is possible to reach high magnetoresistance at room temperature, up to 21% under 1.2 T. These materials are compared to La5/6Ag1/6MnO3 which corresponds to the same Mn3+:Mn4+ ratio and exhibits a magnetoresistance of 25% in this field. An interesting feature deals with the value of the insulator-metal transition temperature TIM, often higher than TC, especially for Ag-based compounds. It is suggested that the latter results either from a better oxygenation of the surface of the grains or from a migration of silver toward the surface.  相似文献   

9.
The gadolinium-based manganite GdMnO3 of perovskite structure has been partially substituted at the manganese site by transition metal elements Me like Cu, Ni and Co, leading to a general formula GdMexMn1−xO3, in which different magnetic entities (e.g., Gd3+, Cu2+, Ni2+, Co2+, Co3+, Mn3+, Mn4+) can coexist, depending on charge equilibrium conditions. For divalent cations such as Cu2+ and Ni2+, the solid solution extends from x  (Me)=0–0.5, with O-type orthorhombic symmetry (a<c/√2<b)(a<c/2<b). When the substituting element is cobalt, the solid solution extends over the whole range [0?x  ?1], changing from O′-type symmetry (c/√2<a<b)(c/2<a<b) to O-type for x>0.5. In this latter case, the synthesis is performed under oxygen flow, which allows the cobalt ion to take a 3+ oxidation state.  相似文献   

10.
Electron paramagnetic resonance (EPR), luminescence and infrared spectra of Mn2+ ions doped in zinc gallate (ZnGa2O4) powder phosphor have been studied. The EPR spectra have been recorded for zinc gallate phosphor doped with different concentrations of Mn2+ ions. The EPR spectra exhibit characteristic spectrum of Mn2+ ions (S=I=5/2) with a sextet hyperfine pattern, centered at geff=2.00. At higher concentrations of Mn2+ ions, the intensity of the resonance signals decreases. The number of spins participating in the resonance has been measured as a function of temperature and the activation energy (Ea) is calculated. The EPR spectra of ZnGa2O4: Mn2+ have been recorded at various temperatures. From the EPR data, the paramagnetic susceptibility (χ) at various temperatures, the Curie constant (C) and the Curie temperature (θ) have been evaluated. The emission spectrum of ZnGa2O4: Mn2+ (0.08 mol%) exhibits two bands centered at 468 and 502 nm. The band observed at 502 nm is attributed to 4T16A1 transition of Mn2+ ions. The band observed at 468 nm is attributed to the trap-state transitions. The excitation spectrum exhibits two bands centered at 228 and 280 nm. The strong band at 228 nm is attributed to host-lattice absorption and the weak band at 280 nm is attributed to the charge-transfer absorption or d5→d4s transition band. The observed bands in the FT-IR spectrum are assigned to the stretching vibrations of M-O groups at octahedral and tetrahedral sites.  相似文献   

11.
The crystal structure evolution of the Sr2GdRuO6 complex perovskite at high-temperature has been investigated over a wide temperature range between 298 K≤T≤1273 K. Powder X-ray diffraction measurements at room temperature and Rietveld analysis show that this compounds crystallizes in a monoclinic perovskite-type structure with P21/n (#14) space group and the 1:1 ordered arrangement of Ru5+ and Gd3+ cations over the six-coordinate M sites, with lattice parameters a=5.81032(8) Å, b=5.82341(4) Å, c=8.21939(7) Å, V=278.11(6) Å3 and angle β=90.311(2)o. The high-temperature analysis shows that this material suffers two-phase transitions. At 373 K it adopts a monoclinic perovskite structure with I2/m space group, and lattice parameters a=5.81383(2) Å, b=5.82526(4) Å, c=8.22486(1) Å, V=278.56(2) Å3 and angle β=90.28(2)o. Above of 773 K, it suffers a phase transition from monoclinic I2/m to tetragonal I4/m, with lattice parameters a=5.84779(1) Å, c=8.27261(1) Å, V=282.89(5) Å3 and angle β=90.02(9)o. The high-temperature phase transition from monoclinic I2/m to tetragonal I4/m is characterized by strongly anisotropic displacements of the anions.  相似文献   

12.
We synthesized the Mn-doped Mg(In2−xMnx)O4 oxides with 0.03?x?0.55 using a solid-state reaction method. The X-ray diffraction patterns of the samples were in a good agreement with that of a distorted orthorhombic spinel phase. Their lattice parameters and unit-cell volumes decrease with x due to the substitution of the smaller Mn3+ ions to the larger In3+ ions. The undoped MgIn2O4 oxide presents diamagnetic signals for 5 K?T?300 K. The M(H) at T=300 K reveals a fairly negative-sloped linear relationship. Neither magnetic hysteresis nor saturation behavior was observed in this parent sample. For the Mn-doped samples, however, positive magnetization were observed between 5 and 300 K even if the x value is as low as 0.03. The mass susceptibility enhances with Mn content and it reaches the highest value of 1.4×10−3 emu/g Oe (at T=300 K) at x=0.45. Furthermore, the Mn-doped oxides with x=0.06 and 0.2, respectively, exhibit nonlinear magnetization curves and small hysteretic loops in low magnetic fields. Susceptibilities of the Mn-doped samples are much higher than those of MnO2, Mn2O3 oxides, and Mn metals. These results show that the oxides have potential to be magnetic semiconductors.  相似文献   

13.
The local lattice structure and EPR parameters (D, g, g) have been studied systematically on the basis of the complete energy matrix for a d3 configuration ion in a trigonal ligand field. By simulating the calculated optical and EPR spectra data to the experimental results, the local distortion parameters (ΔR, Δθ) are determined for V2+ ions in CdCl2 and CsMgCl3 crystals, respectively. The results show that the local lattice structure of CdCl2:V2+ system exhibits a compression distortion (ΔR=−0.0868 Å) while that of CsMgCl3:V2+ system exists an elongation distortion (ΔR=0.0165 Å). The different distortion may be ascribed to the fact that the radius of V2+ ion is smaller than that of Cd2+ ion or larger than that of Mg2+ ion. Moreover, the relationships between EPR parameter D and local structure parameters (R, θ) as well as the orbital reduction factor k and gfactors (g, g) are discussed.  相似文献   

14.
Two methods—the solid-phase high-temperature (1300 °C) and the liquid-phase low-temperature (750 °C) routes—were used to synthesize the complex oxide La1.25Sr0.75MnCoO6, which has the structure of rhombohedral perovskite and is characterized by a disordered distribution of Mn and Co in structural sites. It was found by means of X-ray absorption near edge spectroscopy (XANES) at the K-edge that mixed valence states of Co2+/Co3+ and Mn3+/Mn4+, exist in both phases. Measurements of dc magnetization and real (χ′) and imaginary (χ″) parts of the ac susceptibility showed that the magnetic properties of these oxides are determined by a ferromagnetic transition at TC=217 K and a frequency-dependent transition at Tg<100 K. The high frequency dependence of Tg is indicative of the cluster-glass behavior of La1.25Sr0.75MnCoO6 (7 5 0) at T<TC within the ferromagnetic state.  相似文献   

15.
Migration of small polarons in λ-MnO2, Li0.5Mn2O4 and LiMn2O4 is studied via first principles calculations. Migration energy barriers of single small polaron migrations in λ-MnO2, Li0.5Mn2O4 and LiMn2O4 are 0.22 eV, 0.45 eV and 0.35 eV, respectively. The energy level changes of Mn-3d states along the polaron migration path are analyzed in detail. Results indicate that the activation energy barrier of polaron migration is strongly associated with the energy level shift of Mn-3dz2 orbital, which is dependent on the short range structural arrangement of Mn3+/Mn4+ in the crystal. The electrical conduction properties of LixMn2O4 at room temperature are then discussed.  相似文献   

16.
Changyu Shen  Yi Yang  Huajun Feng 《Optik》2010,121(1):29-32
The shift of the emission band to longer wavelength (yellow-orange) of the Ba2MgSi2−xAlxO7: 0.1Eu2+ phosphor under the 350-450 nm excitation range has been achieved by adding the codoping element (Mn2+) in the host. The single-host silicate phosphor for WLED, Ba2MgSi2−xAlxO7: 0.1Eu2+, 0.1Mn2+ was prepared by high-temperature solid-state reaction. It was found experimentally that, its three-color emission peaks are situated at 623, 501 and 438 nm, respectively, under excitation of 350-450 nm irradiation. The emission peaks at 438 and 501 nm originate from the transition 5d to 4f of Eu2+ ions that occupy the two Ba2+ sites in the crystal of Ba2MgSi2−x AlxO7, while the 623 nm emission is attributed to the energy transfer from Eu2+ ions to Mn2+ ions. The white light can be obtained by mixing the three emission colors of blue (438 nm), green (501 nm) and red (623 nm) in the single host. When the concentrations of the Al3+, Eu2+ and Mn2+ ions were 0.4, 0.1 and 0.1 mol, respectively, the sample presented intense white emission. The addition of Al ion to the host leads to a substantial change of intensity ratio between blue and green emissions. White light could be obtained by combining this phosphor with 405 nm light-emitting diodes. The near-ultraviolet GaN-based Ba2MgSi1.7 Al0.3O7: 0.1Eu2+, 0.1Mn2+ LED achieves good color rendering of over 85.  相似文献   

17.
We report the temperature dependence of susceptibility for various pressures, magnetic fields and constant magnetic field of 5 T with various pressures on La2−2xSr1+2xMn2O7 single crystal to understand the effectiveness of pressure and magnetic field in altering the magnetic properties. We find that the Curie temperature, Tc, increases under pressure (dTc/dP=10.9 K/GPa) and it indicates the enhancement of ferromagnetic phase under pressure up to 2 GPa. The magnetic field dependence of Tc is about 26 K for 3 T. The combined effect of pressure and constant magnetic field (5 T) shows dTc/dP=11.3 K/GPa and the peak structure is suppressed and broadened. The application of magnetic field of 5 T realizes 3D spin ordered state below Tc at atmospheric pressure. Both peak structure in χc and 3D spin ordered state are suppressed, and changes to 2D-like spin ordered state by increase of pressure. These results reveal that the pressure and the magnetic field are more competitive in altering the magnetic properties of bilayer manganite La1.25Sr1.75Mn2O7 single crystal.  相似文献   

18.
Superposition model (SPM) calculations are carried out to provide theoretical interpretation of the zero-field splitting (ZFS) parameters and investigate the local environment around the Fe3+ centers in a TlGaSe2 single crystal. Experimental electron magnetic resonance (EMR) data are analyzed and compared with the ZFS parameter values predicted by SPM based on the orthorhombic approximation of structural data. The results provide an adequate interpretation of the ZFS parameters obtained by fitting EMR spectra and indicate that Fe3+ ions substitute for the Ga3+ ions in TlGaSe2 crystal.  相似文献   

19.
Epitaxial thin films of CaRu1−xMxO3 (M=Ti, Mn) were fabricated on a (0 0 1)-SrTiO3 substrate by spin-coat method using organometallic solutions (metal alkoxides). Results of X-ray diffraction and transmission electron microscopy indicate that the epitaxial films were grown pseudomorphically so as to align the [0 0 l] axis of the CaRu1−xMxO3 films perpendicular to the (0 0 1) plane of the SrTiO3 substrate. Ferromagnetism and metal-insulator transition are induced by the substitution of transition metal ions. The occurrence of ferromagnetism was explained qualitatively assuming a TiRu6 cluster model for CaRu1−xTixO3 film and a mixed valence model for CaRu1−xMnxO3 film. Ferromagnetism was also observed for layered CaRuO3/CaMnO3 film and CaRuO3/CaMnO3/CaRuO3/CaMnO3 multilayer film and the magnetism was explained by an interfacial exchange interaction model with magnetic Mn3+, Mn4+, and Ru5+ ions.  相似文献   

20.
A novel long-lasting phosphorescence phosphor, Mn2+-activated Mg2SnO4, has been synthesized and its optical properties have been investigated. The Mg2SnO4:Mn2+ emits green light with high luminance, upon UV irradiation, centered at 499 nm from the spin forbidden transitions of the d-electrons in Mn2+ ions. The CIE chromaticity coordinates of the Mg2SnO4:Mn2+ phosphor are x=0.0875 and y=0.6083 under 254 nm UV excitation. The phosphorescence can be observed by the naked eyes (0.32 mcd/m2) in the dark clearly for over 5 h after the 5 min UV irradiation. Thermoluminescence has been studied and the mechanism of the long-lasting phosphorescence has been discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号