首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
CdTe nanocrystals were grown from commercially available RG850 Schott filter glass by two-step heat-treatment process which almost doubles the particle to matrix volume fraction. A calculation shows that a quantized-state effective mass model in the strong confinement regime might be used to deduce the average radius for the nanocrystals larger than 2 nm in radius from the energetic position of the first exciton peak in optical absorption spectrum. Size-induced shift of ∼360 meV in the first exciton peak position was observed. The steady state photoluminescence spectra exhibit a broad band red shifted relative to the first exciton band, which indicates the existence of shallow trap states. The non-linear optical properties of CdTe nanocrystals were studied by room temperature resonant photoabsorption spectroscopy. The differential absorption spectra had three-lobed structure whose size-dependent evolution was explained by bleaching of the absorption, red shift and broadening in the Gaussian absorption band used to fit the first exciton peak. A maximum red shift of 2.32 meV for the average nanocrystal radius of 4.65 nm was estimated by fitting the photomodulation spectra with a combination of first and second derivative Gaussian absorption bands. We presume that the red shift is induced by the electric field of trapped charges in surface states. Internal electric field strengths of 23 and 65 kV/cm were predicted for the average nanocrystal radii of 3.95 and 4.65 nm, respectively, with the help of second-order perturbation theory in the strong confinement limit.  相似文献   

2.
The excitation mechanism of rare-earth ions in silicon nanocrystals   总被引:2,自引:0,他引:2  
A detailed investigation on the excitation mechanisms of rare-earth (RE) ions introduced in Si nanocrystals (nc) is reported. Silicon nanocrystals were produced by high-dose 80-keV Si implantation in thermally grown SiO2 followed by 1100 °C annealing for 1 h. Subsequently some of the samples were implanted by 300-keV Er, Yb, Nd, or Tm at doses in the range 2×1012–3×1015 /cm2. The energy was chosen in such a way to locate the RE ions at the same depth where nanocrystals are. Finally an annealing at 900 °C for 5 min was performed in order to eliminate the implantation damage. These samples show intense room-temperature luminescence due to internal 4f shell transitions within the RE ions. For instance, luminescence at 1.54 μm and 0.98 μm is observed in Er-doped nc, at 0.98 μm in Yb-doped nc, at 0.92 μm in nc and two lines at 0.78 μm and 1.65 μm in Tm-doped nc. Furthermore, these signals are much more intense than those observed when RE ions are introduced in pure SiO2 in the absence of nanocrystals, demonstrating the important role of nanocrystals in efficiently exciting the REs. It is shown that the intense nc-related luminescence at around 0.85 μm decreases with increasing RE concentration and the energy is preferentially transferred from excitons in the nc to the RE ions which, subsequently, emit radiatively. The exact mechanism of energy transfer has been studied in detail by excitation spectroscopy measurements and time-resolved photoluminescence. On the basis of the obtained results a plausible phenomenological model for the energy transfer mechanism emerges. The pumping laser generates excitons within the Si nanocrystals. Excitons confined in the nc can either give their energy to an intrinsic luminescent center emitting at around 0.85 μm nor pass this energy to the RE 4f shell, thus exciting the ion. The shape of the luminescence spectra suggests that excited rare-earth ions are not incorporated within the nanocrystals and the energy is transferred at a distance while they are embedded within SiO2. Rare-earth excitation can quantitatively be described by an effective cross section σeff taking into account all the intermediate steps leading to excitation. We have directly measured σeff for Er in Si nc obtaining a value of ≈2×10−17 cm2. This value is much higher than the cross section for excitation through direct photon absorption (8×10−21 cm2) demonstrating that this process is extremely efficient. Furthermore, the non-radiative decay processes typically limiting rare-earth luminescence in Si (namely back-transfer and Auger) are demonstrated to be absent in Si nc further improving the overall efficiency of the process. These data are reported and their implications. Received: 9 April 1999 / Accepted: 10 April 1999 / Published online: 2 June 1999  相似文献   

3.
The atomic structure and charge transfer on the Ge (1 0 5) surface formed on Si substrates are studied using scanning tunneling microscopy and spectroscopy (STM and STS). The bias-dependent STM images of the whole Ge (1 0 5) facets formed on a Ge “hut” structure on Si (0 0 1) are observed, which are well explained by the recently confirmed structure model. The local surface density of states on the Ge (1 0 5) surface is measured by STS. The localization of the electronic states expected from charge transfer mechanism is observed in the dI/dV spectra. The surface band gap is estimated as 0.8-0.9 eV, which is even wider than the bulk bandgap of Ge, indicating the strong charge transfer effect to make the dangling bonds stable. The shape of normalized tunnel conductance agrees with the theoretical band structure published recently by Hashimoto et al.  相似文献   

4.
A pulsed KrF excimer laser of irradiance of about 108 W/cm2 was utilized to synthesize Si nanocrystals on SiO2/Si substrates. The results were compared with that ones obtained by applying low bias voltage to Si(1 0 0) target in order to control the kinetic energy of plasma ions. Glancing incidence X-ray diffraction spectra indicate the presence of silicon crystalline phases, i.e. (1 1 1) and (2 2 0), on SiO2/Si substrates. The average Si nanocrystal size was estimated to be about 45 nm by using the Debye-Scherrer formula. Scanning electron microscopy and atomic force microscopy images showed the presence of nanoparticles of different size and shape. Their distribution exhibits a maximum concentration at 49 nm and a fraction of 14% at 15 nm.  相似文献   

5.
Er离子注入的富硅SiO2MOS-LED的可见和红外电致发光特性   总被引:1,自引:0,他引:1  
通过Er离子和Si离子注入并结合高温退火制备了Er掺杂的富硅SiO2薄膜以及ITO/SiON/富硅SiO2:Er/Si MOS结构电致发光器件.研究了富Si浓度的变化对Er3+离子掺杂的电致发光器件的发光性能和传导特性的影响.发现不同Si含量对Er3+离子的不同能级的电致发光会产生不同作用.在富Si量小于5%的条件下,...  相似文献   

6.
We have successfully fabricated a single-electron transistor based on undoped Si nanocrystals having radii of approximately 3 nm. Gate voltage oscillation was observed from low temperature to room temperature and Coulomb diamonds found to decrease in size with increasing gate voltage. The 3D calculation of the energy band structure of the Si nanocrystals and the interactions among the nanocrystals shows the increase of the quantum confinement effect when the dimensionality of the system decreases. At the same time the reduction in the dimensionality causes a decrease in the interaction among nanocrystals in an exponential manner. The carrier transport properties observed experimentally have been well understood in terms of carrier tunneling and Coulomb blockade effects. It is concluded that for the present single-electron transistor, the energy separation of the first excited sublevel and the ground state is rather large so that the Coulomb diamonds observed in the carrier transport characteristics are determined mainly by the Coulomb charging effect.  相似文献   

7.
The structure and growth mechanism of GaAs nanocrystals grown on Si (111) substrates by using the molecular beam epitaxy method have been studied using transmission electron microscopy. The isolated nanocrystals had hexangular shapes, with aspect ratio ~1 and high symmetry. The crystal structure of the GaAs nanocrystals contains a mixture of a stable state of zinc-blende and a metastable state of wurtzite. A number of thin wurtzite layers parallel to the Si (111) plane are introduced into the zinc-blende GaAs nanocrystals as stacking faults. Formation of partial dislocations near the GaAs/Si interface and the small difference in the Gibbs free energy between the zinc-blende and wurtzite structures could cause formation of wurtzite as stacking faults in the zinc-blende structure  相似文献   

8.
We have studied the effect of high-pressure water-vapor annealing (HWA) on the excitation energy transfer from Si nanocrystals to dye molecules in porous Si layers. Efficient photoluminescence, originating from both RhB molecules and Si nanocrystals, was observed. The behavior of the polarization memory of the photoluminescence showed the presence of energy transfer from the surface-passivated Si nanocrystals to RhB molecules. The fact that HWA, which is an effective method to stabilize and enhance the emission from Si nanocrystals in porous Si, does not suppress the energy transfer is an important result since it makes possible the realization of stable Si/dye-nanocomposite functional devices.  相似文献   

9.
The recent observation of optical gain from silicon nanocrystals embedded in SiO2 opens an opportunity to develop a nanoscale silicon-based laser. However, the challenge remains to design and develop a laser architecture using CMOS-compatible materials. In this paper we present two designs for a waveguide laser in which silicon nanocrystals embedded in SiO2 are used as the optical gain media. One design employs a SiO2 membrane containing encapsulated Si nanocrystals. Preliminary calculations given here show that a highly resonant laser cavity can be produced in a SiO2 membrane using sub-wavelength structures. This photonic crystal architecture, used to guide and contain the light, can be combined with a gain medium of optically active Si nanocrystals synthesized in the SiO2 membrane using ion implantation/thermal annealing to produce a Si-based laser. The laser cavity dimensions can be matched to the near-infrared wavelengths where optical gain has been observed from Si nanocrystals. The second design utilizes silicon nanocrystals embedded in a distributed-feedback laser cavity fabricated in SiO2. Lasing action over a broad wavelength range centered at ∼770 nm should be possible in both of these configurations. Received: 20 December 2002 / Accepted: 7 January 2003 / Published online: 11 April 2003 RID="*" ID="*"Corresponding author. Fax: +1-434/982-2037, E-mail: supriya@virginia.edu  相似文献   

10.
We perform a comparative st udy on the electroluminescence (EL) and photoluminescence (PL) of Si nanocrystaldoped SiO2 (nc-Si:SiO2) and SiO2, and clarify whether the contribution from Si nanocrystals in the EL of nc-Si:SiO2 truly exists. The results unambiguously indicate the presence of EL of Si nanocrystals. The difference of peak positions between the EL and PL spectra are discussed. It is found that the normal method of passivation to enhance the PL of Si nanocrystals is not equally effective for the EL, hence new methods need to be explored to promote the EL of Si nanocrystals.[第一段]  相似文献   

11.
Colloidal CdSe nanocrystals were synthesized through a solution process. The CdSe nanocrystals coated on Si(1 0 0) wafers were UV-exposed in either an air or argon atmosphere to distinguish the effect of generated ozone from UV-radiation at 365 nm on the removal of surface capping pyridine molecules. The pyridine on the CdSe nanocrystal's surface could be effectively removed by the ozone generated during UV-exposure with an accompanying highly oxidized surface state of the CdSe nanocrystals. For the removal of surface oxides of CdSe nanocrystals, a successive thermal treatment under ultra high vacuum (UHV) was adopted. The optical energy bandgap measured by using UV-vis absorption spectroscopy showed a red shift with treatment with an increase of annealing temperature. The electronic energy structure of UHV-annealed CdSe nanocrystals film was analyzed in situ using X-ray absorption and photoelectron spectroscopy. A great resemblance was found between the values of the optical and electron energy bandgaps of effectively surface-treated CdSe nanocrystals film after UHV-annealing at 400 °C.  相似文献   

12.
Titanium silicide grows on silicon in a form of discontinuous layers, which is the most serious obstacle to the formation of high-quality epilayers for VLSI applications. At the same time, nanometric dimensions of the epitaxial silicide islands attract interest as quantum nanostructures. However, for this purpose, nanocrystals in a self-assembled array have to be defect-free, and exhibit high shape and size uniformity. In this work titanium silicide was grown on Si(1 1 1) substrates by reactive deposition epitaxy and by solid-phase epitaxy. Since the reaction and phase-formation kinetics depend on the growth method, accordingly different lattice matching and facet energies may result in different morphological shapes of the nanocrystals. Nanocrystals from reaction in a solid-state could be characterized as highly non-uniform in both shape and size, and their evolution due to post-deposition anneals increased that non-uniformity even further. Relaxation of epitaxial mismatch strain by misfit dislocations could be inferred from a gradual reduction of the nanocrystal vertical aspect ratio and development of flat top facets out of the initially sharp conical crests, in accord with generalized Wulf-Kaishew theorem. On the other hand, the silicide nanocrystals formed by reactive deposition exhibited high uniformity and thermal stability. Significant strain relaxation, as could be judged by the nanocrystal flattening, took place only at temperatures in excess of 650 °C, followed by progressive nanocrystal coalescence. It thus could be inferred, that better titanium silicide nanocrystal arrays (in the sense of uniformity and stability) are more easily obtained by reactive deposition epitaxy than by solid-phase epitaxy. While terminal, stable C54-TiSi2 phase, did eventually form in the epilayers in both methods, different evolution pathways were manifested by different respective morphologies and orientations even in this final state.  相似文献   

13.
在本文中我们首次报道了p型掺杂的自组织Si/Ge量子点中空穴能级子带间的电子拉曼散射,此电子跃迁的能量为105meV。Si/Ge量子点Ge Ge模的共振拉曼散射表明此空穴能级间的电子拉曼散射与Γ点附近的E0(≈2.52eV)发生了共振,而E1的能量小于2.3eV.变温实验和偏振实验进一步证实了我们的指认。所有观测的实验数据与6 bandk·p能带结构理论的计算结果吻合得很好。  相似文献   

14.
To investigate the initial growth of Fe films on Si(0 0 1) and the Fe/Si interface, Fe films at various thicknesses have been systematically studied by soft X-ray absorption spectroscopy (XAS) and X-ray photoemission spectroscopy (XPS). The Fe L edge XAS spectrum shows a strong thickness dependence with broader line-width for thinner films. Detailed analysis of the Fe absorption signal as a function of the thickness shows that the broad linewidth of Fe L edge XAS spectra is mostly contributed by the first Fe layer at the Fe/Si interface. In contrast to XAS, Fe 2p photoemission spectra for these films are identical. However, valence band photoemission also shows a strong thickness dependence. Comparing the valence band photoemission spectra of the thin Fe/Si(0 0 1) films with that of pure Si and the thickest Fe film, the difference spectra at all thicknesses show almost identical shape indicating the same origin: the Fe/Si interface. Thus, it is mainly the first Fe layer at Fe/Si layer that is reactive with the Si substrate changing its electronic structure.  相似文献   

15.
Micro-photoluminescence and micro-Raman studies have been performed in the silicon-hydrogen system, near the onset of microcrystallinity, during the transition from amorphous-like to microcrystalline-like phase. Amorphous-like Si:H films before the onset of microcrystallization, as determined by a micro-Raman probe, exhibit a microcrystalline-like photoluminescence (PL) band, which is a doublet within the 1.0-1.2 eV energy band. These two satellite components exhibit two different natures of energy shifts with variation of either excitation intensity or temperature; however, both attribute to the germinate recombination of carriers. The ultimate line shape is determined by the low-energy component, because of its faster quenching with temperature. Two different characteristic temperatures of exponential band-tail states are obtained, contributing tail widths of 22 and 17 meV at lower and higher temperature regimes, respectively, across 200 K, as calculated in terms of the carrier thermalization model. PL-spectroscopy may offer a new means of diagnostics for Si:H network before the onset of microcrystallinity.  相似文献   

16.
A direct comparison between photoemission measurements and band structure calculations is sometimes tricky. Matrix element effects may affect considerably the spectral weight of the electronic states and prevent the expected translational symmetry of the band structure from being observed. We show how matrix element effects can be qualitatively described to a certain extent by making an analogy between photoemission and low energy electron diffraction. We have tested this approach in two superperiodic systems. We have first explained the intensity distribution in different Brillouin zones of a surface state in Si(1 1 1)-(7 × 7), where the surface state spectral intensity does not exhibit the (7 × 7) symmetry. We have also compared the LEED intensity of superperiodic LEED spots with the energy dependence of bulk bands on a facetted Si surface as measured by photoemission.  相似文献   

17.
A model to account for the size, shape and structure dependent cohesive energy of metallic nanocrystals is developed in this contribution. It is predicted that the cohesive energy of nanocrystals decreases with decreasing the crystal size in specific shape, and decreases with increasing the shape factor in specific size. Furthermore, the model can be applied to predict the size and shape dependent phase stability of nanocrystal. To take Cr nanocrystal as an example, we found that there exists FCC structure for Cr crystal (the bulk structure is BCC) when the crystal size is small enough, and critical size of phase transition ranges from 249 to 824 atoms due to crystal shape variation, which is consistent with the corresponding experimental results.  相似文献   

18.
The technique of combined optical second-harmonic (SH) intensity and phase spectroscopy, which is the spectroscopic modification of SH phase measurements, is proposed to study the nonlinear optical response of semiconductor interfaces with spectrally close resonant contributions. The spectral dependences of SH intensity and phase from oxidised Si (111) and Ge (111) surfaces are studied in the range of 3.5- to 5-eV SH photon energy. The resonant behaviour of combined SH spectra is associated with a superposition of contributions from direct interband transitions at several critical points of Si and Ge band structures. Received: 16 October 2001 / Revised version: 16 April 2002 / Published online: 6 June 2002  相似文献   

19.
We have successfully fabricated a single-electron transistor based on undoped Si nanocrystals having radii of approximately 3–5 nm. The energy band structure of the Si dot consists of a set of discrete sublevels and a quasi-continuous band. By self-consistently solving the 3D Schrödinger and Poisson equations we have shown that the undoped Si dots between the source and drain are not occupied at zero gate bias. The carrier transport properties observed experimentally at zero gate bias have been well attributed to carrier tunneling through a multiple-step potential barrier between the source and drain junctions. Each step in the potential barrier corresponds to the bottom of the quasi-continuous band in one Si nanocrystal.  相似文献   

20.
Si/SiO2 superlattices were prepared by magnetron sputtering, and the deposition temperature and annealing temperature had a great influence on the superlattice structure. In terms of SEM images, the mean size of Si nanocrystals annealed at 1100 °C is larger than that of nanocrystals annealed at 850 °C. It was found that the films deposited at room temperature are amorphous. With increasing deposition temperature, the amorphous and crystalline phases coexist. With increasing annealing temperature, the Raman intensity of the peak near 470 cm−1 decreases, and the intensity of that at 520 cm−1 increases. Also, on increasing the annealing temperature, the Raman peak near 520 cm−1 shifts and narrows, and asymmetry emerges. A spherical cluster is used to model the nanocrystals in Si/SiO2 superlattices, and the observed Raman spectra are analyzed by combining the effects of confinement on the phonon frequencies. Raman spectra from a variety of nanocrystalline silicon structures were successfully explained in terms of the phonon confinement effect. The fitted results agreed well with the experimental observations from SEM images.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号