首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Effectively atomically flat GaAs/AlAs interfaces over a macroscopic area (“super-flat interfaces”) have been realized in GaAs/AlAs and GaAs/(GaAs) (AlAs) quantum wells (QWs) grown on (4 1 1)A GaAs substrates by molecular beam epitaxy (MBE). A single and very sharp photoluminescence (PL) peak was observed at 4.2 K from each GaAs/AlAs or GaAs/(GaAs) (AlAs) QW grown on (4 1 1)A GaAs substrate. The full-width at half-maximum (FWHM) of a PL peak for GaAs/AlAs QW with a well width ( ) of 4.2 nm was 4.7 meV and that for GaAs/(GaAs) (AlAs) QW with a smaller well width of 2.8 nm (3.9 nm) was 7.6 meV (4.6 meV), which are as narrow as that for an individual splitted peak for conventional GaAs/AlAs QWs grown on (1 0 0) GaAs substrates with growth interruption. Furthermore, only one sharp peak was observed for each GaAs/(GaAs) (AlAs) QW on the (4 1 1)A GaAs substrate over the whole area of the wafer (7 7 mm ), in contrast with two- or three-splitted peaks reported for each GaAs/AlAs QW grown on the (1 0 0) GaAs substrate with growth interruption. These results indicate that GaAs/AlAs super-flat interfaces have been realized in GaAs/AlAs and GaAs/(GaAs) (AlAs) QWs grown on the (4 1 1)A GaAs substrates.  相似文献   

2.
We report on a strong piezoresistive effect in GaAs/ Inx Ga1–x As/AlAs superlattice structures fabricated on a GaAs‐base cantilever. The measurements of the piezoresistive properties were performed for tensile strains by static pressure experiments. The maximum gauge factor (GF) for the GaAs/Inx Ga1–x As/AlAs epilayer can be estimated to 200, which is higher than the value of the gauge factor reported for Si transducers. Our results demonstrate a higher potential of GaAs/Inx Ga1–x As/AlAs superlattice structures for the development of piezoresistive sensors. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
Low-temperature pressure-dependent photoluminescence measurements on short-period GaAs/AlAs superlattice structures are presented. Measurements show that the lowest energy conduction-band states are in the AlAs layers and the highest energy valence-band states are located in the GaAs layers. This result is supported by the following three experimental observations: (1) the observed pressure coefficient for the conduction-band to valence-band transition energy is negative, (2) the magnetic mass of this transition is “heavy”, and (3) the band-to-band absorption coefficient appears to be small. These experimental observations are in agreement with predictions of tight-binding calculations.  相似文献   

4.
The ground state energy of quasi-two-dimensional electron-hole liquid (EHL) at zero temperature is calculated for type-II (GaAs)m/(AlAs)m (5≤m≤10) quantum wells (QWs). The correlation effects of Coulomb interaction are taken into account by a random phase approximation of Hubbard. Our EHL ground state energy per electron-hole pair is lower than the exciton energy calculated recently for superlattices, so we expected that EHL is more stable state than excitons at high excitation density. It is also demonstrated that the equilibrium density of EHL in type-II GaAs/AlAs QWs is of one order of magnitude larger than that in type-I GaAs/AlAs QWs.  相似文献   

5.
Various temperature measurements of cyclotron resonance (CR) under pulsed ultra-high magnetic field up to 160 T were carried out in InGaAs/GaAs superlattice (SL) and InGaAs/AlAs SL samples grown by molecular beam epitaxy on GaAs substrates. Clear free-electron CR and impurity CR signals were observed in transmission of CO2 laser with wavelength of 10.6 μm. A binding energy of impurities in these SLs was roughly estimated based on the experiment as result, and we found it was smaller than the previous experimental result of GaAs/AlAs SLs and theoretical calculation with a simple model.  相似文献   

6.
Hot electrons cooling by phonons in GaAs/AlAs cylindrical quantum wire (CQW), under the influence of an intense electromagnetic wave (EMW), is studied theoretically. Analytic expression for the electron cooling power (CP) is derived from the quantum transport equation for phonons, using the Hamiltonian of interacting electron–optical phonon system. Both photon absorption and emission processes are considered. Numerical results show that the CP reaches maximum when the energy difference between electronic subbands equals the energy of an optical phonon plus the photon energy. Under the influence of the EMW, the negative CP is observed showing that electrons gain energy from phonon and photon instead of losing their energy. Also, the CP increases with increasing the EMW amplitude. Our results theoretically clarify the mechanism of the electron cooling process by phonons in the GaAs/AlAs CQW under the EMW, which is of significance for designing and fabricating high-speed nanoelectronic devices based on this material.  相似文献   

7.
We have carried out cyclotron resonance (CR) measurements of (InGaAs)8/(AlAs)8 superlattice (SL) to investigate electronic properties of the SL under pulsed ultra-high magnetic fields. The magnetic fields up to 160 T were generated by using the single-turn-coil technique. Clear CR signals were obtained in the transmission of far-infrared laser through the SL at room temperature and lower temperature. We observed a shift of CR peak to lower magnetic field caused by transition from free-electron CR to impurity CR below 90 K. Compared with the previous works of GaAs/AlAs SL, the peak shift was small and the transition temperature was low. This result suggests that a binding energy of the impurity in the InGaAs/AlAs SL is smaller than the GaAs/AlAs SL.  相似文献   

8.
A study is reported of steady-and nonsteady-state photoluminescence of intentionally undoped and uniformly silicon-doped type-II (GaAs)7(AlAs)9 superlattices grown by MBE simultaneously on (311)A-and (100)-oriented GaAs substrates. It has been established that at elevated temperatures (160>T>30 K) the superlattice spectra are dominated by the line due to the donor-acceptor recombination between donors in the AlAs layers and acceptors located in the GaAs layers. The total carrier binding energy to the donor and acceptor in a pair has been determined. Fiz. Tverd. Tela (St. Petersburg) 40, 1734–1739 (September 1998)  相似文献   

9.
Pyramidal microcavities are a new class of optical resonators with potentially small mode volume and high quality factor. Our GaAs pyramids with embedded InGaAs quantum dots are placed on top of GaAs/AlAs distributed Bragg reflectors to increase the optical confinement at the base of the pyramids. The pyramidal shape is achieved by a wet-chemical etching process using an AlAs sacrificial layer. Temperature-dependent micro-photoluminescence measurements are used to verify optical modes.  相似文献   

10.
The technique of Raman spectroscopy has been used to investigate doped (n-type) and undoped GaAs/AlAs superlattices with AlAs barrier thicknesses from 17 to 1 monolayers. The peak corresponding to the scattering by a two-dimensional plasmon was found in the Raman spectrum of a doped superlattice with relatively thick barriers. The position of the experimental peak corresponded to the value calculated in the model of plasma oscillations in periodic planes of a two-dimensional electron gas. The electron tunneling effects played an increasingly prominent role as the AlAs barrier thickness decreased. The peaks corresponding to the scattering by coupled phonons with three-dimensional plasmons were found in the Raman spectra for a superlattice with an AlAs thickness of 2 monolayers; i.e., the delocalization of coupled modes was observed. In this case, the folding of acoustic phonons was observed in the superlattice under consideration, indicative of its good periodicity, while the localization of optical phonons in GaAs layers was observed in undoped superlattices with an AlAs thickness of 2 monolayers.  相似文献   

11.
We have theoretically investigated the valence-band discontinuity (ΔEv) at the (100) GaAs/AlAs interface with the InAs strained insertion-layer. The theoretical calculation is carried out by the self-consistent tight-binding method with the sp3s* basis in the (GaAs)5/(InAs)1/(AlAs)5/(InAs)1 [100] superlattice. ΔEv at the GaAs/InAs(1ML)/AlAs interface is calculated to be 0.50 eV, which is practically equal to ΔEv = 0.51 eV at the GaAs/AlAs interface with no InAs layers. The insertion of the InAs monolayer changes the detail of valence charge density at the GaAs/AlAs interface but does not change ΔEv. The result of calculation is in consistent with our experimental measurement by using the x-ray photoelectron spectroscopy.  相似文献   

12.
Multiple-angle-of-incidence ellipsometry at 632.8 nm and optical reflectance spectra are used to study GaAs/AlAs superlattices on GaAs substrates. The diagnostic potential of the two methods are compared to each other. Precise values of the total film thicknesses are obtained from the ellipsometric data. Significant disagreement between the measured and nominal thicknesses based on RHEED controlled MBE growth conditions is observed. Nonuniformity of a superlattice film is identified with the spatial resolution of about 1 mm2. The thickness variations are accompanied by pronounced variations of the optical constants.  相似文献   

13.
《Physics letters. A》1988,131(1):69-72
The Raman scattering from both GaAs and AlAs confined LO phonons for several GaAs/AlAs superlattices is presented. The GaAs confined LO phonons were observed for two narrow GaAs layer samples at room temperature. The frequencies of observed phonons fit fairly well with the theoretical dispersion curves.  相似文献   

14.
The phonon-plasmon interaction in tunneling GaAs n /AlAs m superlattices (m=5and 6≥n≥0.6 monolayers) was studied by Raman scattering spectroscopy. The interaction of optical phonons localized in GaAs and AlAs layers with quasi-three-dimensional plasmons strengthens as the thickness of GaAs quantum wells decreases and the electronic states in the superlattices become delocalized due to tunneling. It is assumed that the plasmons also interact with the TO-like phonon modes localized in quantum islands or in thin ruffled layers.  相似文献   

15.
We have studied six GaAs/AlAs superlattices with periods ranging from 18 to 60 Å and different average aluminum composition. Three of these samples are shown to be direct bandgap materials whose band structure differs strongly from that of the corresponding alloy, but is correctly described by an envelope function calculation. The three remaining samples are shown to be indirect both in real and reciprocal space. The lowest energy transitions are found to arise from an exciton involving a heavy hole state mostly confined in the GaAs layer and at the Brillouin zone center (Λ), and an electronic state of X character confined in the AlAs layers. Analysis of the time decay of the luminescence shows that this is a momentum-forbidden exciton made allowed by disorder scattering, which leads to a luminescence efficiency comparable to that of the direct bandgap samples. Partial lifting of the degeneracy of the three X orbitals by the superlattice potential is also observed. Finally, we take advantage of the strong dependence of these indirect transition energies on the band discontinuities to estimate the valence band offset to be about 550 meV in this system.  相似文献   

16.
With the local density approximation, the band structares of the short-period (GaAs)1(AlAs)1 and (GaAs)2(AlAs)1 superlattices are calculated by using the first-principle self-consistent pseudopotential method. The results show that the (GaAs)1(AlAs)1 superlattice is an indirect semiconductor, and the lowest conduction band state is at point R in the Brillouin zone; the (GaAs)2(AlAs)1 superlattice is a direct semiconductor and the lowest conduction band state is at point Γ. The squared matrix elements of transition are calculated. The pressure coefficients of energy gaps of the (GaAs)1(AlAs)1 and (GaAs)2(AlAs)1 superlattices are calculated and compared with those obtained by hydrostatic pressure experiments.  相似文献   

17.
The polarization characteristics of hot photoluminescence in GaAs/AlAs superlattices are investigated experimentally and theoretically. It is shown that the formation of an electronic miniband in the superlattice substantially changes the polarization characteristics of the photoluminescence. As a result of the quasi-three-dimensional character of the motion of hot electrons in the superlattice, the polarization depends on the ratio of the electron kinetic energies in the plane of the superlattice and along the axis of the superlattice. Pis’ma Zh. éksp. Teor. Fiz. 63, No. 4, 285–289 (25 February 1996)  相似文献   

18.
We present a magnetoreflectivity study of three GaAs/AlAs multiple quantum wells with widths 75, 100 and 150 Å. At T = 5K, the reflectivity spectra exhibit features associated with the excitons as well as interband Landau transitions. The slopes of these transitions imply that the electrons are confined in the GaAs layers. In addition, experimental values for the exciton binding energies are determined from the zero field intercepts of the Landau transitions.  相似文献   

19.
We have investigated the quantum-statistics behavior of the exciton-biexciton system from the photoluminescence properties in (GaAs) m /(AlAs) m type-II superlattices with m = 12 and 13 monolayers, where the lowest-energy type-II exciton consists of the n = 1 X electron of AlAs and n = 1 o heavy hole of GaAs. The long exciton lifetime of the order of w s due to the indirect transition nature enables us to obtain precisely the density relation between the exciton and biexciton from the line-shape analysis of time-resolved photoluminescence spectra. In a relatively low exciton-density region, the biexciton density obeys a well-known square law. At an exciton density around 1 2 10 10 cm m 2 , the biexciton density suddenly increases with a threshold-like nature. This behavior, which is realized at a bath temperature up to 8 K under an excitation power of the order of 100 mW/cm 2 , results from the characteristics of Bose-Einstein statistics of the exciton-biexciton system.  相似文献   

20.
郝国栋  班士良  贾秀敏 《中国物理》2007,16(12):3766-3771
By taking the influence of optical phonon modes into account, this paper adopts the dielectric continuum phonon model and force balance equation to investigate the electronic mobility parallel to the interfaces for AlAs/GaAs semiconductor quantum wells (QWs) under hydrostatic pressure. The scattering from confined phonon modes, interface phonon modes and half-space phonon modes are analysed and the dominant scattering mechanisms in wide and narrow QWs are presented. The temperature dependence of the electronic mobility is also studied in the temperature range of optical phonon scattering being available. It is shown that the electronic mobility reduces obviously as pressure increases from 0 to 4GPa, the confined longitudinal optical (LO) phonon modes play an important role in wide QWs, whereas the interface optical phonon modes are dominant in narrow QWs, the half-space LO phonon modes hardly influence the electronic mobility expect for very narrow QWs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号