首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Magnetoelectric (ME) nanocomposites containing Ni0.75Co0.25Fe2O4-BiFeO3 phases were prepared by citrate sol-gel process. X-ray diffraction (XRD) analysis showed phase formation of xNi0.75Co0.25Fe2O4-(1−x)BiFeO3 (x=0.1, 0.2, 0.3 and 0.4) composites on heating at 700 °C. Transmission electron microscopy revealed the formation of powders of nano order size and the crystal size was found to vary from 30 to 85 nm. Dispersion in dielectric constant (ε) and dielectric loss (tan δ) in the low-frequency range have been observed. It is seen that nanocomposites exhibit strong magnetic properties and a large ME effect. On increasing Ni0.75Co0.25Fe2O4 contents in the nanocomposites, the saturation magnetization (MS) and coercivity (HC) increased after annealing at 700 °C. The large ME output in the nanocomposites exhibits strong dependence on magnetic bias and magnetic field frequency. The large value of ME output can be attributed to small grain size of ferrite phase of nanocomposite being prepared by citrate precursor process.  相似文献   

2.
Polycrystalline soft ferrite samples with general formula ZnNdxFe2−xO4 (where x=0, 0.01, 0.02 and 0.03) were synthesized by oxalate co-precipitation method. The samples were characterized by XRD and SEM techniques. The single phase cubic spinel structure of all the samples was confirmed by XRD. The lattice constant and grain size of the samples are found to decrease with increase in Nd3+ content. Room temperature DC resistivity of the Nd3+ substituted zinc ferrites is 102 times higher than that of zinc ferrite. The dielectric constant (ε′) and dielectric loss (tan δ) of all the samples were measured in the frequency range 20 Hz-1 MHz. The dielectric behaviour is attributed to the Maxwell-Wagner type interfacial polarization. The dielectric loss of the samples is found to decrease with increase in Nd3+ content. High resistivity and low dielectric loss makes these ferrites particularly suitable for high frequency applications.  相似文献   

3.
The new spinel-type of general formula Ni0.6+xZn0.2Cu0.2VxFe2−2xO4 with 0.0≤x≤0.25 was synthesized by the usual ceramic method. Structure of the prepared ferrites was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDX). Room temperature magnetic hysteresis loops were measured using magnetic field strength up to 6 kOe. Saturation magnetization (Ms) increased with vanadium content up to x=0.05 and then decreased. Variation of (Ms) as a function of x is explained in terms of cation redistribution between A and B sublattices. Coercive force (Hc), remanent induction (Br) and squareness of the hysteresis loop (Br/Ms) as functions of x are presented. Dielectric permittivity (ε′, ε″) and dielectric loss tangent (tan δ) were measured as functions of frequency and temperature. These parameters were found to be strongly dependent on V2O5 concentration. The variation of dielectric loss tangent with frequency at different temperatures shows abnormal behavior, where more than one relaxation peaks were observed at low and high temperatures. This behavior could be attributed to the collective contribution of two types of carriers (p and n) to polarization.  相似文献   

4.
SrLaxFe12−xO19 films (x=0-1.0) with large magneto-crystalline anisotropy were synthesized on SiO2 substrate by sol-gel and self-propagating high-temperature synthesis technique. The films were characterized by various experimental techniques including X-ray diffraction analysis, Field Emission Scanning Electron Microscope, Atomic Force Microscopy, Vibrating Sample Magnetometry and vector network analyzer. The results show that La ions completely enter into strontium ferrite lattice without changing the ferrite appearance; its grain size is approximately 40-80 nm, its length is 100 nm; the magnetoplumbite structure is proved through testing a concertina form of the crystal grain; the maximum coercivity is 5986 Oe at x=0.2; La-doped films possess a wider microwave absorption frequency range with better gross loss angle tangent (tan δ>0.1), from 9 to 10.5 GHz at x=0.2, where the maximum value of tan δ reaches 0.2709. The La-doped films reach smaller nanometer size, better magnetic properties and microwave absorption properties with the doping of lanthanum.  相似文献   

5.
This paper reports the experimental investigations on the effect of La3+ and Ta5+ substitution on the structural characteristics and dielectric and piezoelectric properties of lead calcium titanate (PCT) ceramic. The PCT samples with A-site and B-site substitution having the composition formula Pb0.76−x/2LaxCa0.24(Ti0.98Mn0.02)1−x/2O3 and Pb0.76Ca0.24Mn0.02Ti 0.98−5x/4TaxO3, x=0 and 0.02, respectively, were prepared using conventional solid-state reaction method. Phase formation and structural analysis were studied using X-ray diffraction and scanning electron microscopy, respectively. Dielectric constant (ε′) and loss tangent (tan δ) as a function of frequency were measured at room temperature as well as elevated temperature. Both ε′ and tan δ decreased with increase in frequency at room temperature. Curie temperature decreased with La and Ta doping in PCT ceramics due to a decrease in the tetragonality of PCT ceramics. Piezoelectric charge coefficients (d33, d31) increased with La3+ substitution due to reorientation of the grains and decreased with Ta5+ substitution because of the increase in porosity. Figure of merit dhgh increased and decreased with La and Ta substitution, respectively. A good ferroelectric behaviour is obtained for La substitution, while no hysteresis is obtained for Ta substitution.  相似文献   

6.
Nanoparticles of Co1−xZnxFe2O4 with stoichiometric proportion (x) varying from 0.0 to 0.6 were prepared by the chemical co-precipitation method. The samples were sintered at 600 °C for 2 h and were characterized by X-ray diffraction (XRD), low field AC magnetic susceptibility, DC electrical resistivity and dielectric constant measurements. From the analysis of XRD patterns, the nanocrystalline ferrite had been obtained at pH=12.5–13 and reaction time of 45 min. The particle size was calculated from the most intense peak (3 1 1) using the Scherrer formula. The size of precipitated particles lies within the range 12–16 nm, obtained at reaction temperature of 70 °C. The Curie temperature was obtained from AC magnetic susceptibility measurements in the range 77–850 K. It is observed that Curie temperature decreases with the increase of Zn concentration. DC electrical resistivity measurements were carried out by two-probe method from 370 to 580 K. Temperature-dependent DC electrical resistivity decreases with increase in temperature ensuring the semiconductor nature of the samples. DC electrical resistivity results are discussed in terms of polaron hopping model. Activation energy calculated from the DC electrical resistivity versus temperature for all the samples ranges from 0.658 to 0.849 eV. The drift mobility increases by increasing temperature due to decrease in DC electrical resisitivity. The dielectric constants are studied as a function of frequency in the range 100 Hz–1 MHz at room temperature. The dielectric constant decreases with increasing frequency for all the samples and follow the Maxwell–Wagner's interfacial polarization.  相似文献   

7.
La1−xSrxMn1−yFeyO3 nanocrystalline powders were prepared by the sol-gel method as a microwave absorption material. The reflectance, the dielectric loss tan δe and the magnetic loss tan δm of the samples were calculated according to the data of electromagnetism parameters measured by a microwave vector network analyzer in the frequency range 2-18 GHz. The dielectric loss tan δe and the magnetic loss tan δm had a step-change at a certain frequency so that the superiority of dielectric loss change into the superiority of magnetic loss, which indicated that anti-ferromagnetic clusters in the material change into ferromagnetic clusters by absorbing quantum of microwave electromagnetic field when the frequency of incident microwave reaches a certain value. The effective absorption bandwidth higher than 10 dB reached 6.2 GHz. As a result, the La0.8Sr0.2Mn1−yFeyO3 has shown useful applications as a microwave absorption material.  相似文献   

8.
Particulate composites with composition (x)BaTiO3+(1−x)Ni0.92Co0.03Cu0.05Fe2O4 in which x varies as 1, 0.85, 0.70, 0.55 and 0 (in mol%) were prepared by the conventional double sintering ceramic technique. The presence of two phases viz. ferromagnetic (Ni0.92Co0.03Cu0.05Fe2O4) and ferroelectric (BaTiO3) was confirmed by X-ray diffraction analysis. The dc resistivity and thermo-emf measurements were carried out with variation of temperature. The ac conductivity (σac) measurements investigated in the frequency range 100 Hz to 1 MHz conclude that the conduction in these composites is due to small polarons. The variation of dielectric constant and loss tangent with frequency (20 Hz to 1 MHz) was studied. The static magnetoelectric conversion factor, i.e. dc (dE/dH)H was measured as a function of intensity of applied magnetic field. The changes were observed in electrical properties as well as in magnetoelectric voltage coefficient as the molar ratio of the constituent phases was varied. A maximum value of magnetoelectric conversion factor of 536.06 μV/cm Oe was observed for the composite with 70% BaTiO3+30% Ni0.92Co0.03Cu0.05Fe2O4 at a dc magnetic field of 2.3 K Oe. The maximum magnetoelectric conversion output has been explained in terms of ferrite-ferroelectric content, applied static magnetic field and resistivity.  相似文献   

9.
Polycrystalline ferrites with general formula Co0.5CdxFe2.5−xO4 (0.0?x?0.5) were prepared by sol-gel method. The dielectric properties ε′, ε″, loss tangent tan δ and ac conductivity σac have been studied as a function of frequency, temperature and composition. The experimental results indicate that ε′, ε″, tan δ and σac decrease as the frequency increases; whereas they increase as the temperature increases. These parameters are found to increase by increasing the concentration of Cd content up to x=0.2, after which they start to decrease with further increase in concentration of Cd ion. The dielectric properties and ac conductivity in studied samples have been explained on the basis of space charge polarization according to Maxwell and Wagner's two-layer model and the hoping between adjacent Fe2+ and Fe3+ as well as the hole hopping between Co3+and Co2+ ions at B-sites. The values of activation energies Ef for conduction process are determined from Arrhenius plots, and the variations in these activation energies as a function of Cd content are discussed. The complex impedance analysis is used to separate the grain and grain boundary of the system Co0.5CdxFe2.5−xO4. The variations of both grain boundary and grain resistances with temperature and composition are evaluated in the frequency range 42 Hz-5 MHz.  相似文献   

10.
(Ni0.25Cu0.20Zn0.55)LaxFe2−xO4 ferrite with x=0.00, 0.025, 0.050 and 0.075 compositions were synthesized through nitrate–citrate auto-combustion method. Crystalline spinel ferrite phase with about 16–19 nm crystallite size was present in the as-burnt ferrite powder. These powders were calcined, compacted and sintered at 950 °C for 4 h. Initial permeability, magnetic loss and AC resistivity of different compositions were measured in the frequency range from 10 Hz to 10 MHz. Saturation magnetization and hysteresis parameters were measured at room temperature with a maximum magnetic field of 10 kOe. Permeability and AC resistivity were found to increase and magnetic loss decreased with La substitution for Fe, up to x=0.025. Saturation magnetization and coercive field also increases up to that limit. The electromagnetic properties were found best in the ferrite composition of x=0.025, which would be better for more miniaturized multi layer chip inductor.  相似文献   

11.
Nanocrystalline Ca1−xHoxMnO3−δ (0?x?0.3) manganites were synthesized as phase-pure by a simple and instantaneous solution autogel combustion method, which is a low temperature initiated synthetic route to obtain fine grain size. All the samples, heated at 800 °C for 18 h, can be produced as phase-pure; the polycrystalline powders are homogeneous and possess ultrafine particle size. The holmium-doped calcium manganites retain the orthorhombic phase of the undoped sample. The scanning electron microscope (SEM) images revealed that the combustion-derived compounds exhibit particle size that decreases with holmium content from 300 to 80 nm. All manganites show two active IR vibrational modes near 400 and 600 cm−1. The high temperature dependence of resistivity was measured using a standard four-probe method in the range 25-600 °C. All the samples exhibit semiconductor behaviour and holmium induces a marked decrease in the electrical resistivity when compared with the parent CaMnO3. The results can be well attributed to the Mn4+/Mn3+ ratio and to the particle grain size.  相似文献   

12.
Samples with various nominal compositions in the Tb-Hg-Sr-Ca-Cu-O system were prepared and studied by EDX, powder X-ray diffraction including the Rietveld refinement, electrical resistivity, magnetic susceptibility and thermoelectric power measurements. EDX and powder X-ray diffraction studies showed that Tb is required for the stabilization of the 1212, (Hg1−yTby)Sr2TbCu2O6+δ; y≈0.5 phase. Electrical resistivity and magnetic susceptibility measurements indicated that substitution of Tb by Ca is necessary to induce superconductivity in the 1212, (Hg0.5Tb0.5)Sr2(Tb1−xCax)Cu2O6+δ samples. The Rietveld refinements of the X-ray data of two samples with x=0.0 and 0.5 were carried out on the basis of tetragonal symmetry (space group P4/mmm) and the results indicated that the phase with x=0.5 has less puckered Cu-O planes than the Ca-free (Hg0.5Tb0.5)Sr2TbCu2O6+δ phase. Syperconductivity is observed only for samples with x>0.2 and Tc increases with increasing Ca content, x. The results of thermoelectric power measurements suggest that the samples with x<0.8 are located in the underdoped region and the x=0.8 sample is optimally doped and exhibits the highest Tc of 88 K.  相似文献   

13.
Crystal structure, thermogravimetry (TG), thermal expansion coefficient (TEC), electrical conductivity and AC impedance of (Ba0.5Sr0.5)1-xLaxCo0.8Fe0.2O3-δ (BSLCF; 0.05?x?0.20) were studied in relation to their potential use as intermediate temperature solid oxide fuel cell (IT-SOFC) cathode. A single cubic pervoskite was observed by X-ray diffraction (XRD). The TEC of BSLCF was increasing slightly with the increasing content of La, and all the compounds showed abnormal expansion at high temperature. Proved by the TG result, it was associated with the loss of lattice oxygen. The electrical conductivity, which is the main defect of Ba0.5Sr0.5 Co0.8Fe0.2O3-δ (BSCF), was improved by La doping, e.g., the compound of x=0.20 demonstrated a conductivity of σ=376 S cm−1 at 392 °C. The increase of electrical conductivity resulted from the increased concentration of charge carrier induced by La doping. In addition, the AC impedance revealed the better electrochemical performance of BSLCF. For example, at 500 °C, the sample with composition x=0.15 yielded the resistance values of 2.12 Ω cm2, which was only 46% of BSCF.  相似文献   

14.
The effect of γ irradiation on some physical properties of rare earth ferrite of the general formula Li0.5+zCoz YbxFe2.5−2zxO4, (z=0.1, x=0.00, 0.025, 0.050, … , 0.200) is discussed. The temperature dependence of the polarization and resistance is studied in the range (300 K≤T≤700 K) at different frequencies (10 kHz≤f≤1 MHz). The relaxation time and the activation energy have been calculated before and after irradiation with γ rays doses of 1 and 3 Mrad. A comparison was made between the ac resistance before and after irradiation for the samples with (0.0≤x≤0.2). The results after irradiation with 1 Mrad γ rays showed that the resistance at the critical concentration decreases from 800 to 25 kΩ at room temperature. Furthermore, with increasing temperature the resistance ranged from R≈130 kΩ at T≈310 K to R≈0.13 kΩ at T≈640 K. Thus, it is possible to improve the conductivity of this type of rare earth ferrite materials to be used in technological applications at room as well as at high temperature.  相似文献   

15.
Ni0.25Cu0.2Zn0.55SmxFe2−xO4 ferrite with x=0.00, 0.025, 0.05 and 0.075 compositions were synthesized through the nitrate-citrate auto-combustion method. These powders were calcined, compacted and sintered at 900 °C for 4 h. Effect of Sm substitution on phase composition, microstructure and relative density were studied. Permeability, magnetic loss and AC resistivity were measured in the frequency range of 1 kHz-10 MHz. Permeability and AC resistivity were found to increase and loss decreased with Sm substitution up to x=0.05. Saturation magnetization also increased up to that substitution limit. Observed variations in electromagnetic properties have been explained.  相似文献   

16.
The effects of K doping in the A-site on the structural, magnetic and magnetocaloric properties in La0.65Ca0.35−xKxMnO3 (0?x?0.2) powder samples have been investigated. Our samples have been synthesized using the solid-state reaction method at high temperature. The parent compound La0.65Ca0.35MnO3 is an orthorhombic (Pbnm space group) ferromagnet with a Curie temperature TC of 248 K. X-ray diffraction analysis using the Rietveld refinement show that all our synthesized samples are single phase and crystallize in the orthorhombic structure with Pbnm space group for x?0.1 and in the rhombohedral system with R3¯c space group for x=0.2 while La0.65Ca0.2K0.15MnO3 sample exhibits both phases with different proportions. Magnetization measurements versus temperature in a magnetic applied field of 50 mT indicate that all our investigated samples display a paramagnetic-ferromagnetic transition with decreasing temperature. Potassium doping leads to an enhancement in the strength of the ferromagnetic double-exchange interaction between Mn ions, and makes the system ferromagnetic at room temperature. Arrott plots show that all our samples exhibit a second-order magnetic-phase transition. The value of the critical exponent, associated with the spontaneous magnetization, decreases from 0.37 for x=0.05 to 0.3 for x=0.2. A large magnetocaloric effect (MCE) has been observed in all samples, the value of the maximum entropy change, |ΔSm|max, increases from 1.8 J/kg K for x=0.05 to 3.18 J/kg K for x=0.2 under a magnetic field change of 2 T. For x=0.15, the temperature dependence of |ΔSm| presents two maxima which may arise from structural inhomogeneity.  相似文献   

17.
In this paper we studied the effects of Bi2O3 and PbO addition on BiFeO3 (BFO) ceramic matrix. The structural, dielectric and magnetic properties of fifteen BFO samples were discussed in view of possible applications in RF and microwave devices. The present work also reports the preparation of the samples. Polyvinyl alcohol (PVA) and tetraethyl orthosilicate (TEOS) were also added as a binder in the fabrication procedure. The samples have been studied by X-ray powder diffraction (XRD), scanning electron microscopy (SEM) and magnetic hysteresis measurements. Further, a study based on impedance spectroscopy also has been done. Dielectric permittivity (ε′) and dielectric loss (tan δ) were measured at room temperature in the frequency range 100 Hz-10 MHz, as well as a.c. conductivity. The -Im[Z(f)] versus Re[Z(f)] plot has been obtained. The samples were investigated in view of possible applications like miniaturized filters, diplexers and dielectric resonator antennas (DRA). In the RF and MW frequency region, the application of magneto-dielectric and multiferroic perovskite composite materials is desirable for the miniaturization of components.  相似文献   

18.
The dielectric and magnetic properties of Mg incorporated Ni-Zn spinel ferrites have been investigated. Ni0.5−xZn0.5MgxFe2O4 ferrites have been prepared by sol-gel auto-combustion technique. The as prepared ferrites were annealed at 673, 873 and 1073 K. The X-ray diffraction studies reveal the spinel structure of annealed ferrites. The TEM results are in agreement with XRD results. FTIR study has also been carried out to get insight into the structure of these ferrites. The dielectric measurements show that the dielectric constant (ε′), dielectric loss (tan δ) and conductivity (σac) increase on incorporation of Mg in the Ni-Zn ferrite. ε′, tan δ and σac also show dependence on temperature, frequency of external applied electric field and microstructure of the samples. The magnetic moment measurements reveal that the saturation magnetization (Ms) increases and coercivity (Hc) decreases with the increase in concentration of Mg2+ ions. Ms and Hc also show dependence on the annealing temperature.  相似文献   

19.
Dielectric properties, viz. dielectric constant ε′, loss tan δ and a.c conductivity σac (over a wide range of frequency and temperature) and dielectric breakdown strength of PbO-Sb2O3-As2O3 glasses doped with V2O5 (ranging from 0 to 0.5 mol%) are studied. Analysis of these results, based on optical absorption and ESR spectra, indicates that the insulating strength of the glasses is comparatively high when the concentration of V2O5 is about 0.3 mol% in the glass matrix.  相似文献   

20.
Magnetoelectric (ME) composites consisting of ferrite phase (x) Ni0.5Zn0.5Fe2O4+ferroelectric phase (1−x)Pb Zr0.8Ti0.2O3 (Lead Zirconate Titanate—PZT) in which x (mol%) varies between 0 and 1 (0.0≤x≤1.0) was synthesized by double sintering ceramic method. The presence of constituent phases of ferrite, ferroelectric and their composites was confirmed by X-ray diffraction studies. The hysteresis measurement was used to study magnetic properties such as saturation magnetization (MS) and magnetic moment (μB). The existence of single domain (SD) particle in the ferrite phase and mixed (SD+MD) particle in the composites was studied from AC susceptibility measurements. ME voltage coefficient for each mol% of ferrite phase was measured as a function of applied DC magnetic field and at the same time influence of magnetic field on ME response and resistivity of composites was studied. The maximum ME voltage coefficient of 0.84 mV/cm Oe was observed for 15% of ferrite phase and 85% of ferroelectric phase in the composites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号