共查询到20条相似文献,搜索用时 31 毫秒
1.
Fe/SiO2 particles with core/shell structure were prepared by coating silica on the surface of a commercial spherical carbonyl iron via the hydrolysis process of tetraethyl orthosilicate (TEOS). The electromagnetic performance of commercial carbonyl iron and as-prepared Fe/SiO2 particles was studied theoretically and experimentally. As predicted by the theoretical calculation based on the Bruggeman formula and the Landau–Lifshitz–Gilbert (LLG) theory, the insulating surface layer of silica was effective to reduce the permittivity parameters of pure carbonyl iron. The measured results showed good agreement with the theoretical prediction. Although there was a little decrease in the permeability of the Fe/SiO2 core/shell particles, a better impedance match especially at higher frequency range was obtained when used as a microwave absorber. The reflection loss (RL) curves show that the lowest reflection loss of Fe/Epoxy composite (−20.5 GHz) was obtained corresponding to the frequency of 8.5 GHz when the thickness of the absorber was 3 mm. A different trend was observed in Fe/SiO2/Epoxy composite. The reflection loss value got lower by decreasing the thickness of absorbers. At the thickness of 2.2 mm, a relative low reflection loss (−17 GHz) corresponding to the frequency of 13.6 GHz was obtained. Compared with the Fe/Epoxy composite, the improvement on shifting the reflection loss peak to higher frequency and on reducing the optimal thickness of absorbers was made by Fe/SiO2/Epoxy composite. 相似文献
2.
Preparation and hydrogen storage of activated rayon-based carbon fibers with high specific surface area 总被引:1,自引:0,他引:1
Activated carbon fibers were prepared from rayon-based carbon fibers by two step activations with steam and KOH treatments. Hydrogen storage properties of the activated rayon-based carbon fibers with high specific surface area and micropore volume have been investigated. SEM, XRD and Brunauer-Emmett-Teller (BET) were used to characterize the samples. The adsorption performance and porous structure were investigated by nitrogen adsorption isotherm at 77 K on the base of BET and density functional theory (DFT). The BET specific surface area and micropore volume of the activated rayon-based carbon fibers were 3144 m2/g and 0.744 m3/g, respectively. Hydrogen storage properties of the samples were measured at 77 and 298 K with pressure-composition isotherm (PCT) measuring system based on the volumetric method. The capacities of hydrogen storage of the activated rayon-based carbon fibers were 7.01 and 1.46 wt% at 77 and 298 K at 4 MPa, respectively. Possible mechanisms for hydrogen storage in the activated rayon-based carbon fibers are discussed. 相似文献
3.
Size controlled cubic Fe3O4 nanoparticles in the size range 90–10 nm were synthesized by varying the ferric ion concentration using the oxidation method. A bimodal size distribution was found without ferric ion concentration and the monodispersity increased with higher concentration. The saturation magnetization decreased from 90 to 62 emu/g when the particle size is reduced to 10 nm. The Fe3O4 nanoparticles with average particle sizes 10 and 90 nm were surface modified with prussian blue. The attachment of prussian blue with Fe3O4 was found to depend on the concentration of HCl and the particle size. The saturation magnetization of prussian blue modified Fe3O4 varied from 10 to 80 emu/g depending on the particle size. The increased tendency for the attachment of prussian blue with smaller particle size was explained based on the surface charge. The prussian blue modified magnetite nanoparticles could be used as a radiotoxin remover in detoxification applications. 相似文献
4.
Fe-doped ZnO porous microspheres composed of nanosheets were prepared by a simple hydrothermal method combined with post-annealing, and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), Brunauer–Emmett–Teller N2 adsorption–desorption measurements and photoluminescence (PL) spectra. In this paper we report Fe doping induced modifications in the structural, photoluminescence and gas sensing behavior of ZnO porous microspheres. Our results show that the crystallite size decreases and specific surface area increases with the increase of Fe doping concentration. The PL spectra indicate that the 4 mol% Fe-doped ZnO has higher ratio of donor (VO and Zni) to acceptor (VZn) than undoped ZnO. The 4 mol% Fe-doped ZnO sample shows the highest response value to ppb-level n-butanol at 300 °C, and the detected limit of n-butanol is below 10 ppb. In addition, the 4 mol% Fe -doped ZnO sample exhibits good selectivity to n-butanol. The superior sensing properties of the Fe-doped porous ZnO microspheres are contributed to higher donor defects contents combined with larger specific surface area. 相似文献
5.
Yunsheng Zhang Aili Wang Chun Liu Longbao Yu Tingshun Jiang Ying Hang 《Journal of Physics and Chemistry of Solids》2010,71(10):1458-1466
Zirconia-coated rutile TiO2 composites were prepared by the chemical liquid deposition method starting from rutile TiO2 and ZrOCl2. The amorphous zirconia coating layers were anchored at the TiO2 surface via Zr-O-Ti bond. The formation of continuous and dense zirconia coating layers was dependent on the pH value of the reaction solution and the mole ratio of ZrOCl2 to TiO2. As compared to the naked rutile TiO2, the water dispersibility, whiteness, brightness, and relative light scattering index of the zirconia-coated rutile TiO2 composites were increased. 相似文献
6.
Copper-doped titania with variable Cu/Ti ratios have been prepared via a simple aqueous-phase method at 85 °C. The obtained products were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and UV-vis absorption spectra analysis. The photocatalytic properties of the products were tested by photocatalytic degradation of aqueous brilliant red X-3B solution. The results showed that the sample with 2% copper doping has the best photocatalytic activity, which is 3 times that of undoped rutile titania. The effect of the doped copper on the structure and property of TiO2 has also been discussed. 相似文献
7.
P. Thomas K. Dwarakanath T.R.N. Kutty 《Journal of Physics and Chemistry of Solids》2008,69(10):2594-2604
A method of preparing the nanoparticles of CaCu3Ti4O12 (CCTO) with the crystallite size varying from 30 to 200 nm is optimized at a temperature as low as 680 °C from the exothermic thermal decomposition of an oxalate precursor, CaCu3(TiO)4(C2O4)8·9H2O. The phase singularity of the complex oxalate precursor is confirmed by the wet chemical analyses, X-ray diffraction, FT-IR and TGA/DTA analyses. The UV-vis reflectance and ESR spectra of CCTO powders indicate that the Cu(II) coordination changes from distorted octahedra to nearly flattened tetrahedra (squashed) to square-planar geometry with increasing annealing temperature. The HRTEM images have revealed that the evolution of the microstructure in nanoscale is related to the change in Cu(II) coordination around the surface regions for the chemically prepared powder specimens. The nearly flattened tetrahedral geometry prevails for CuO4 in the near surface regions of the particles, whereas square-planar CuO4 groups are dominant in the interior regions of the nanoparticles. The powders derived from the oxalate precursor have excellent sinterability, resulting in high-density ceramics which exhibited giant dielectric constants upto 40,000 (1 kHz) at 25 °C, accompanied by low dielectric loss <0.07. 相似文献
8.
Xiaoping Zhou Dong Shu Chun He Junmin Nan 《Journal of Physics and Chemistry of Solids》2009,70(2):495-828
Vanadium nitride (VN) powder was synthesized by calcining V2O5 xerogel in a furnace under an anhydrous NH3 atmosphere at 400 °C. The structure and surface morphology of the obtained VN powder were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The supercapacitive behavior of VN in 1 M KOH electrolyte was studied by means of cyclic voltammetry (CV), constant current charge-discharge cycling (CD) and electrochemical impedance spectroscopy (EIS). The XRD result indicates that the obtained VN belongs to the cubic crystal system (Fm3m [2 2 5]) with unit-cell parameter 4.15 Å. SEM images show the homogeneous surface of the obtained VN. The CV diagrams illustrate the existence of fast and reversible redox reactions on the surface of VN electrode. The specific capacitance of VN is 161 F g−1 at 30 mV s−1. Furthermore, the specific capacitance remains 70% of the original value when the scan rate increases from 30 to 300 mV s−1. CD experiments show that VN is suitable for CD at high current density, and the slow and irreversible faradic reactions exist during the charge-discharge process of the VN electrode. The experimental results indicate that VN is a promising electrode material for electrochemical supercapacitors. 相似文献
9.
Jae-Kwang Kim Jou-Hyeon Ahn Gil-Chan Hwang 《Journal of Physics and Chemistry of Solids》2008,69(10):2371-2377
Carbon-coated lithium iron phosphate (LiFePO4/C) composites were synthesized by conventional mechanical activation (MA) process and also by a modified MA process. Phase-pure particles were obtained of ∼100 nm size with a nano-meter thick web of carbon surrounding the particles. The composite prepared by the modified MA process shows good performance as cathode material in lithium cells at room temperature. A high performance was achieved at 0.1 C-rate with >96% utilization of the active material. A stable cycle performance even at higher C-rates was achieved with a cathode that has a total carbon content of only 12 wt%. The use of the modified MA process to synthesize LiFePO4/C has promise to be an efficient process to decrease the total carbon content of the cathode, resulting in the enhanced energy density. 相似文献
10.
A new series of metal (II) organophosphates with the formula M(II) 2(H2O)2[O3PCH2(C6H4)CH2PO3] (M=Mn, Fe and Ni) have been prepared by hydrothermal synthesis. The structure consisted of two-dimensional metal–oxygen inorganic layers is pillared by p-xylylenediphosphonate to form a three dimensional framework. The layers are constructed by corner-sharing metal oxygen polyhedron. A study on the magnetism of the materials indicates the presence of spin canted antiferromagnetc interactions. The manganese and iron compounds represent the interesting 3D metal organophosphate molecular metamagnet due to spin canted antiferromagnetic with high critical temperature (40 K for Mn; 16 K for Fe). The infinite M–O–M layers are believed to be responsible for this high performance. 相似文献
11.
Xuzhen Wang 《Journal of Physics and Chemistry of Solids》2010,71(4):673-676
Carbon nanotubes (CNTs) decorated with magnetite nanoparticles on their external surface have been fabricated by in situ solvothermal method, which was conducted in benzene at 500 °C with ferrocene and CNTs as starting reagents. The as-prepared composites were characterized using XRD, FTIR, SEM and TEM. It has been found that the amount of magnetite nanoparticles deposited on the CNTs can be controlled by adjusting the initial mass ratio of ferrocene to CNTs. The Fe3O4-CNT composites display good ferromagnetic property at room temperature, with a saturation magnetization value (Ms) of 32.5 emu g−1 and a coercivity (Hc) of 110 Oe. 相似文献
12.
L.S. Cavalcante J.C. Sczancoski M.R. Joya J.A. Varela 《Journal of Physics and Chemistry of Solids》2008,69(11):2674-2680
In this paper, BaMoO4 powders were prepared by the coprecipitation method and processed in a domestic microwave-hydrothermal. The obtained powders were characterized by X-ray diffraction (XRD), Fourier transform Raman (FT-Raman) spectroscopy, ultraviolet-visible (UV-vis) absorption spectroscopy and photoluminescence (PL) measurements. The morphology of these powders were investigated by scanning electron microscopy (SEM). SEM micrographs showed that the BaMoO4 powders present a polydisperse particle size distribution. XRD and FT-Raman analyses revealed that the BaMoO4 powders are free of secondary phases and crystallize in a tetragonal structure. UV-vis was employed to determine the optical band gap of this material. PL measurements at room temperature exhibited a maximum emission around 542 nm (green emission) when excited with 488 nm wavelength. This PL behavior was attributed to the existence of intrinsic distortions into the [MoO4] tetrahedron groups in the lattice. 相似文献
13.
Yan-Li Shi 《Journal of Physics and Chemistry of Solids》2006,67(11):2409-2418
A novel magnetic photocatalyst, prepared by grafting polyoxometalates (POM) anions PW12O403− onto Fe3O4 nanoparticles via a layer of Ag, was synthesized and characterized. The coated Ag layer was used as an intermediate bond for anchoring POM anions onto the magnetite cores. Resulting materials have been characterized by X-ray powder diffraction (XRD), transmission electron microscopy (TEM), nitrogen adsorption-desorption isotherm, magnetization, and inductively coupled plasma (ICP). The activity of the photocatalyst was tested by the photocatalytic degradation of Rhodamine B. It was found that, compared to pure POM, the decolorization fraction of Rhodamine B in 2 h operation was 2.8-3.4 times higher by using the POM-based nanocomposite. ICP analysis of the concentration of Fe, W and P in treated water showed that photodissolution was minimal. In addition, as the synthesized composite possesses a magnetite core, it is possible to retrieve the photocatalyst by exerting an external magnetic field, which is easier than the recovery of conventional TiO2 fine particles and homogeneous POM photocatalysts. The exhibited photocatalytic activity and magnetization of the novel photocatalyst provide a promising solution for the degradation of water contaminants and photocatalyst recovery. 相似文献
14.
Takeo Oku Ryosuke Motoyoshi Kazuya Fujimoto Tsuyoshi Akiyama Balachandran Jeyadevan John Cuya 《Journal of Physics and Chemistry of Solids》2011,72(11):1206-1211
Copper oxide (CuOx) thin films were produced by spin-coating and electrodeposition methods, and their microstructures and photovoltaic properties were investigated. Thin film solar cells based on the Cu2O/C60 and CuO/C60 heterojunction or bulk heterojunction structures were fabricated on F-doped or In-doped SnO2, which showed photovoltaic activity under air mass 1.5 simulated sunlight conditions. Microstructures of the CuOx thin films were examined by X-ray diffraction and transmission electron microscopy, which indicated the presence of Cu2O and CuO nanoparticles. The energy levels of the present solar cells were also discussed. 相似文献
15.
Takeo Oku Tatsuya Noma Atsushi Suzuki Kenji Kikuchi Shiomi Kikuchi 《Journal of Physics and Chemistry of Solids》2010,71(4):551-5167
Fullerene/porphyrin bulk heterojunction solar cells were fabricated and, the electronic and optical properties were investigated. Effects of exciton-diffusion blocking layer of perylene derivative on the solar cells between active layer and metal layer were also investigated. Optimized structures with the exciton-diffusion blocking layer improved conversion efficiencies. Energy levels of the molecules were calculated and discussed. Nanostructures of the solar cells were investigated by X-ray and electron diffraction, which indicated formation of fullerene/porphyrin mixed crystals. Electronic structures of the molecules were investigated by molecular orbital calculation, and energy levels of the solar cells were discussed. 相似文献
16.
Zhengping Li 《Journal of Physics and Chemistry of Solids》2003,64(2):223-228
CuO particles have decorated on the external surface of MCM-41 by in situ introducing cupric nitrate during the hydrothermal synthesis followed by the calcination. The textural and structural properties of CuO/MCM-41 are compared with those of pure MCM-41. The results show that CuO particles are about 40 nm in size and are not agglomerated. The addition of cupric nitrate to the synthesis gel leads to materials with somewhat reduced quality as evidenced from X-ray diffraction patterns and nitrogen adsorption measurements. CuO/MCM-41 is less ordered relative to pure MCM-41 and there are inter-aggregate pores resulting in a higher average pore diameter in the material. The formation of CuO particles on the external surface of MCM-41 and the possible reason for the less ordered structure of CuO/MCM-41 are also discussed in the present paper. 相似文献
17.
S.V. Trukhanov A.V. Trukhanov R. Szymczak 《Journal of Physics and Chemistry of Solids》2006,67(4):675-681
The crystal structure and electromagnetic properties as well as thermal stability of the A-site ordered PrBaMn2O6 manganites have been investigated. These samples have been prepared by using ‘two-steps’ synthesis mode. They have tetragonal structure with no tilt of MnO6 octahedra and show ferromagnetic metal to paramagnetic semiconductor transition. The most significant structural feature of the A-site ordered manganites is that the MnO2 sublattice is sandwiched by two types of rock-salt layers PrO and BaO. The different degree of Pr and Ba ions in the A-sublattice is revealed. The A-site ordered PrBaMn2O6 sample with maximum degree of the A-site order demonstrates ferromagnetic metallic to paramagnetic insulating transition with the Curie point ∼320 K. The A-site disordered Pr0.50Ba0.50MnO3 sample is ferromagnetic metal below TC≈140 K. The cation order in these compounds is stable in air up to 1300 °C. For the partly A-site ordered samples the magnetic and electronic phase separation is observed. The magnetotransport properties of the A-site ordered manganites treated under different conditions are discussed in terms of the superexchange interactions and A-site order degree. 相似文献
18.
Bernadeta Dobosz Ryszard Krzyminiewski Grzegorz Schroeder Joanna Kurczewska 《Journal of Physics and Chemistry of Solids》2014
Iron(II, III) oxide magnetic nanoparticles (NPs) have been coated with (3-Chloropropyl) trimethoxysilane and subsequently functionalized with 4-Amino-2,2,6,6-tetramethylpiperidine-N-oxyl and Amoxicillin. Finally, the functionalized iron oxide NPs have been coated with natural polymer, chitosan, in order to prevent NPs agglomeration in aqueous environment. The product was characterized by Fourier transform infrared (FTIR) spectroscopy and transmission electron microscopy (TEM). It was studied by the electron paramagnetic resonance method and the parameters describing the magnetic properties of the investigated nanoparticles, such as g-factor and line width, were calculated. 相似文献
19.
In this study, we demonstrate a general but efficient solution-phase approach for preparing CuO, β-Ni (OH)2 and Co3O4 nanocrystals selectively by simply adjusting the amount of NaOH in the reaction system of MCln-NH4VO3-NaOH. The experimental results revealed that the amount of NaOH is crucial in the formation of desirable products. The as-obtained nanocrystals were characterized by means of X-ray powder diffraction, transmission electron microscope, high resolution transmission electron microscope, selected area electron diffraction and electrochemical techniques. The as-prepared CuO are nanorods with 15 nm in diameter and 50 nm in length. The as-prepared Ni (OH)2 nanocrystals have the flocculent feature and Co3O4 nanocrystals are composed of irregular particles. It should be pointed out that some traditional metal vanadates occur in these reaction systems, which were usually prepared by the solid-state routes. On the other hand, the electrochemical properties of the obtained products were studied in brief. Electrochemical performances of CuO, β-Ni (OH)2 and Co3O4 nanocrystals were measured with Li metal as the reference anode, which indicates their excellent capacities of Li-deposited for Li-ion batteries. 相似文献
20.
Lingjun Li Zhixing Wang Ling Wu Junchao Zheng Huajun Guo 《Journal of Physics and Chemistry of Solids》2009,70(1):238-97
Submicron-sized LiFePO4 and Ti-doped LiFePO4 cathode materials were synthesized by a reformative co-precipitation and normal temperature reduction method, for which Ti ions were added in the process of preparing precursors to pursue a kind of sufficient and homogenous doping way. ICP and XRD analyses indicate that Ti ions were sufficiently doped in LiFePO4 and did not alter its crystal structure. It is noted that higher Ti ions doping levels are conducive to electrochemical performance of LiFePO4, especially on the aspect of stable cycle-life at higher C rates. The sample doped with 3 at% Ti shows the most impressive cycling performance, even after 100 cycles, discharge capacity of 133 mAh g−1 was obtained (102.3% of its initial value) at 1C rate, and the discharge decreased little from 124 to 120 mAh g−1 (96.8% of its initial value) at 2C rate. 相似文献