首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An electrochemical DNA hybridization biosensor was developed for the detection of DNA hybridization using MDB and proflavine as electrochemical labels. The biosensor was based on the interaction of 7-dimethyl-amino-1,2-benzophenoxazi-nium Meldola’s Blue (MDB) and proflavine with double stranded DNA (dsDNA) The electrochemical behaviour of MDB and proflavine as well as its interaction with double stranded (dsDNA) were investigated by cyclic (CV) and square wave voltammetry (SWV) and screen printed electrodes (ScPE). Furthermore, DNA-hybridization biosensors were developed for the detection of hybridization between oligonucleotides, which was detected by studying changes in the voltammetric peaks of MDB (reduction peak at −0.251 V) and proflavine (reduction peak at 0.075 V). MDB and proflavine were found to intercalate between the base pairs of dsDNA and oligonucleotides. Several factors affecting the dsDNA or oligonucleotides immobilization, hybridization and indicator preconcentration and interaction time, were investigated. As a result of the interaction of MDB with dsDNA and hybridized oligonucleotides, the voltammetric signals of MDB increased. Furthermore, guanine’s oxidation peak (at 0.901 V) was decreased as MDB’s concentration was increased. As a result of the interaction of proflavine with dsDNA and hybridized oligonucleotides, the voltammetric signals of proflavine decreased. These results were similar for carbon paste and screen printed electrodes. A comparison of the performance between CPE and ScPE was done. Our results showed that lower concentrations of MDB and proflavine were detected using screen printed electrodes. Moreover, reproducibility was better using screen printed electrodes and the detection was faster (regarding the experimental steps), but they are more cost effective.   相似文献   

2.
Aysegul Uygun 《Talanta》2009,79(2):194-198
A simple and label-free electrochemical sensor for recognition of the DNA sensor event was prepared by electrochemical polymerization of 4-hydroxyphenyl thiophene-3-carboxylate. Poly(4-hydroxyphenyl thiophene-3-carboxylate) (PHPT) was synthesized electrochemically onto glassy carbon electrode and characterized by cyclic voltammetry, FTIR and AFM measurements. An ODN-probe was physisorbed onto PHPT film and tested on hybridization with complementary ODN segments. A biological recognition can be monitored by comparison with electrochemical signal (cyclic voltammogram) of single and double strand state oligonucleotide. The oxidation current of double strand state oligonucleotide is lower than that of single strand, that is corresponding to the decrease of electroactivity of PHPT with the increase of stiffness of polymer structure. Physisorbed ODN-probe and its hybridization were observed morphologically onto ITO electrodes using AFM. The sensitivity of the electrochemical sensor is 0.02 μA/nmol, detection limit is 1.49 nmol and it has good selectivity.  相似文献   

3.
An in situ evaluation of the dsDNA-methotrexate (MTX) interaction was performed by voltammetry using a DNA-electrochemical biosensor and characterized by atomic force microscopy (AFM) at a highly oriented pyrolytic graphite (HOPG) surface. Electrochemical experiments in incubated solutions showed that the interaction of MTX with dsDNA leads to modifications to the dsDNA structure in a time-dependent manner. The AFM images show reorganization of the DNA self-assembled network on the surface of the HOPG electrode upon binding methotrexate and the formation of a more densely packed and slightly thicker MTX-dsDNA lattice with a large number of aggregates embedded into the network film. The intercalation of MTX between complementary base pairs of dsDNA lead to the increase of purine oxidation peaks due to the unwinding of the dsDNA. The dsDNA-electrochemical biosensor and the purinic homo-polynucleotide single stranded sequences of guanosine and adenosine, poly[G] and poly[A]-electrochemical biosensors, were used to investigate and understand the interaction between MTX and dsDNA.  相似文献   

4.
An electrochemical DNA biosensor based on the screen printed carbon paste electrode (SPCPE) with an immobilized layer of calf thymus double-stranded DNA has been used for in vitro investigation of the interaction between genotoxic nitro derivatives of fluorene (namely 2-nitrofluorene and 2,7-dinitrofluorene) and DNA. Two types of DNA damage have been detected at the DNA/SPCPE biosensor: first, that caused by direct association of the nitrofluorenes, for which an intercalation association has been found using the known DNA intercalators [Cu(phen)2]2+ and [Co(phen)3]3+ as competing agents, and, second, that caused by short-lived radicals generated by electrochemical reduction of the nitro group (observable under specific conditions only).  相似文献   

5.
TPD修饰电化学生物传感器测定DNA片段序列   总被引:7,自引:0,他引:7  
彭图治  程琼 《化学学报》2001,59(7):1125-1129
合成了一种新的吸附偶联试剂-硫酚乙酸琥珀酰亚胺酯(TPD),将TPD吸附在金的表面,利用其琥珀酰亚胺基与客体氨基的反应,将单链DNA修饰在金电极上作为探针,以电化学方法检测能与之互补DNA样品的碱基序列和含量。杂交后的DNA采用自行合成的双[1-二茂铁按甲酰丙基-四氢化吡嗪-4-丙基氨甲酰吡啶]并吩嗪(FCZ)作指示剂进行检测,该化合物能够嵌入DNA双螺旋结构的碱基对中,显示出高度电化学活性。该传感的电流信号与DNA深度在2×10^-8~1×10^-7mol/L范围有线性关系,检测限为8×10^-10mol/L。本方法可用于检测爱滋病和乙肝病毒DNA特征序列的研究。  相似文献   

6.
A lipase-based electrochemical biosensor has been fabricated for the quantitative determination of target DNA. It is based on a stem-loop nucleic acid probe labeled with ferrocene containing a butanoate ester that is hydrolyzed by lipase. The other end of the probe DNA is linked, via carboxy groups, to magnetic nanoparticles. The binding of target DNA transforms the hairpin structure of the probe DNA and causes the exposure of ester bonds. This results in the release of electro-active ferrocene after hydrolysis of the ester bonds, and in an observable electrochemical response. The quantity of target DNA in the concentration range between 1?×?10?12 mol·L?1 and 1?×?10?8 mol·L?1 can be determined by measuring the electrochemical current. The method can detect target DNA with rapid response (30 min) and low interference.
Figure
A lipase-based electrochemical biosensor has been fabricated for the quantitative determination of target DNA. It is based on a stem-loop nucleic acid probe labeled with ferrocene containing a butanoate ester that is hydrolyzed by lipase. The method can detect target DNA with rapid response (30 min) and low interference.  相似文献   

7.
Tetrahedron-structured DNA (ts-DNA) in combination with a functionalized oligonucleotide was used to develop a "turn-on" biosensor for Hg(2+) ions. The ts-DNA provided an improved sensitivity and was used to block the active sites.  相似文献   

8.
A novel and sensitive electrochemical DNA biosensor based on multi-walled carbon nanotubes functionalized with a carboxylic acid group (MWNTs-COOH) for covalent DNA immobilization and enhanced hybridization detection is described. The MWNTs-COOH-modified glassy carbon electrode (GCE) was fabricated and oligonucleotides with the 5'-amino group were covalently bonded to the carboxyl group of carbon nanotubes. The hybridization reaction on the electrode was monitored by differential pulse voltammetry (DPV) analysis using an electroactive intercalator daunomycin as an indicator. Compared with previous DNA sensors with oligonucleotides directly incorporated on carbon electrodes, this carbon nanotube-based assay with its large surface area and good charge-transport characteristics dramatically increased DNA attachment quantity and complementary DNA detection sensitivity. This is the first application of carbon nanotubes to the fabrication of an electrochemical DNA biosensor with a favorable performance for the rapid detection of specific hybridization.  相似文献   

9.
We report on the electrodeposition of palladium nanomaterials in choline chloride–based ionic liquid ethaline. A glassy carbon electrode (GCE) was modified with cobalt nanoparticles (acting as sacrificial templates) and a GCE modified with palladium nanoparticles (PdNPs) were fabricated and used to study the electrocatalytic oxidation of hydrazine (N2H4). Scanning electron microscopy revealed that the PdNP modified GCE has a uniform morphology. Zero current potentiometry was used for in-situ probing the changes in interfacial potential of the oxidation of hydrazine. An amperometric study showed that the PdNP modified GCE possesses excellent electrocatalytic activity towards N2H4. The modified electrode displays a fast response (<2 s), high sensitivity (74.9 μA m(mol L?1)?1?cm?2) and broad linearity in the range from 0.1 to 800 μmol L?1 with a detection limit of 0.03 μmol L?1 (S/N?=?3).
Figure
Scheme 1 illustrated the fabrication strategy of the PdNPs/GCE. The first step was the electrodeoposition of CoNPs on the bare GCE. The second step is consist of two processes: (1) A replacement reaction of CoNPs and Pd2+ was happened along with the formation of PdNPs. CoNPs on the electrode were translated into Co2+ and went into the solution. Pd2+ in the solution was translated into PdNPs and adhered to the GCE surface. (2) A certain voltages was applied, the unreacted Pd2+ was further electrochemical deposited on the formed PdNPs nucleus. This is the first attempt to joint chemical replacement action with template assisted electrodeposition.  相似文献   

10.
A label-free electrochemical DNA biosensor was developed through the attachment of polystyrene-g-soya oil-g-imidazole graft copolymer (PS-PSyIm) onto modified graphene oxide (GO) electrodeposited on glassy carbon electrode (GC). GC/GO electrode was initially functionalised via electrochemical reduction of 4-nitrobenzene diazonium salt, followed by the electrochemical reduction of NO2 to NH2. Subsequent to the electrochemical deposition of gold nanoparticles on modified surface, the attachment of the PS-PSyIm graft copolymer on the resulting electrode was achieved. The interaction of PS-PSyIm with DNA at the bare glassy carbon electrode was studied by cyclic voltammetry technique, and it was found that interaction predominantly takes place through intercalation mode. The selectivity of developed DNA biosensor was also explored by DPV on the basis of considering hybridisation event with non-complementary, one-base mismatched DNA and complementary target DNA sequence. Large decrease in the peak current was found upon the addition of complementary target DNA. The sensitivity of the developed DNA biosensor was also investigated, and detection limit was found to be 1.20 nmol L?1.  相似文献   

11.
12.
DNA sensors and sensor arrays (biochips) have become an important tool in molecular biology and biotechnology in recent years. For low-throughput, easy-to-use devices it is desirable that they be of low cost, reagentless, and label-free. Displacement sensors with electrochemical detection offer these advantages, and therefore the development of such a detection principle is show in this work. An HRP-labeled oligonucleotide was sub-optimally pre-hybridized with a capture probe and was displaced upon introduction of the fully complementary probe target, producing a decrease in signal that was proportional to the sample concentration. This detection scheme has been demonstrated colorimetrically and electrochemically, obtaining a total signal displacement of 55% only 5 min after introduction of the sample.  相似文献   

13.
A novel, sensitive and selective electrochemical hybridisation biosensor was developed for the detection of the hepatitis B virus (HBV) using a manganese(II) complex as electrochemical indicator and a DNA probe-modified carbon paste electrode as the biosensor (DNA/CPE). The results showed that this complex could be accumulated electrochemically the immobilised dsDNA layer rather than in the single-stranded DNA (ssDNA) layer. On the basis of this, the manganese complex was used as an electrochemical hybridisation indicator for the detection of oligonucleotides related to HBV. The hybridisation event was evaluated on the basis of the difference between the reduction signals of the manganese(II) complex with the probe DNA prior to and post hybridisation with a target sequence using a differential pulse mode. Several factors affecting the immobilisation and hybridisation of oligonucleotides as well as the indicator’s accumulation were investigated. Experiments with a non-complementary and mismatch sequences demonstrated the good selectivity of the biosensor. Using this approach, the HBV target oligonucleotide’s sequence could be quantified over arange from 0.22 ng L?1 to 5.40 ng L?1, with a linear correlation coefficient of 0.9994 and the limit of detection of 0.07 ng L?1.  相似文献   

14.
A novel typography technique was developed to in situ synthesize oligonucleotide arrays on glass slide,which has the celerity,high spatial resolution,lower cost,reliable operation,and high synthetic efficiency.The principle and process of the typography technique for fabricating gene-chips have been described in detail.A suit of poly(terafluoroethylene)devices for synthesizing oligonucleotide arrays were designed and prepared,and the fiber tubes with a number of nano-or micron-channels were em- ployed.The oligonucleotide arrays of 16 and 160 features with four different probes were synthesized using the typography technique.The four specific oligonucleotide probes including the matched and the mismatched by the fluorescent target sequence gave obviously different hybridization fluorescent signals.It was indicated that the gene-chip fabricated by the typography method could be used to rapidly screen single-nucleotide polymorphisms(SNP)and to detect mutations.  相似文献   

15.
Development of an electrochemical DNA biosensor based on a human interleukine-2 (IL-2) gene probe, using a pencil graphite electrode (PGE) as transducer and methylene blue (MB) as electroactive label is described. The sensor relies on the immobilization of a 20-mer single stranded oligonucleotide probe (hIL-2) related to the IL-2 gene on the electrode. The hybridization between the probe and its complementary sequence (chIL-2) as the target was studied by square wave voltammetry (SWV) of MB accumulated on the PGE. In this approach the extent of hybridization is evaluated on the basis of the difference between SWV signals of MB accumulated on the probe-PGE and MB accumulated on the probe-target-PGE. Some hybridization experiments with non-complementary oligonucleotides were carried out to assess whether the suggested DNA sensor responds selectively to the target. Some experimental variables affecting the performance of the biosensor including: polishing of PGE, its electrochemical activation conditions (i.e., activation potential and activation time) and probe immobilization conditions on the electrodes (i.e., immobilization potential and time) were investigated and the optimum values of 1.80 V and 300 s for PGE activation, and −0.5 V and 400 s for the probe immobilization on the electrode were suggested.  相似文献   

16.
The in situ hybridization kinetics of label-free DNA on mixed monolayers of peptide nucleic acid (PNA) and 6-mercapto-1-hexanol (MCH) on Au electrodes was investigated by electrochemical impedance spectroscopy (EIS) and used to discriminate the fully complementary DNA from the single-base mismatched hybrids.  相似文献   

17.
徐肖邢 《化学研究与应用》2005,17(6):811-812,815
光度法、色谱法、原子吸收法等已用于硫化氢的测定。这些方法费用高,检测时间长,不能实现H2S现场连续监测。丝网印刷电极有利于解决在线、在体分析中响应的稳定性、重现性与交叉污染等特点而备受关注。丝网印刷电化学传感器已用于环境污染物亚硝酸盐、苯酚的测定。本文在研制一次性印刷碳电极(SPCE)的基础上,研究了N,N-二甲基对苯二胺(DMPD)在印刷电极上的电化学行为及其对硫离子的电催化氧化。  相似文献   

18.
This work reports the development of screen-printed quantum dots (QDs)-based DNA biosensors utilizing graphite electrodes with embedded bismuth citrate as a bismuth precursor. The sensor surface serves both as a support for the immobilization of the oligonucleotide and as an ultrasensitive voltammetric QDs transducer relying on bismuth nanoparticles. The utility of this biosensor is demonstrated for the detection of the C634R mutation through hybridization of the biotin-tagged target oligonucleotide with a surface-confined capture complementary probe and subsequent reaction with streptavidin-conjugated PbS QDs. The electrochemical transduction step involved anodic stripping voltammetric determination of the Pb(II) released after acidic dissolution of the QDs. Simultaneously with the electrolytic accumulation of Pb on the sensor surface, the embedded bismuth citrate was converted in situ to bismuth nanoparticles enabling ultra-trace Pb determination. The biosensor showed a linear relationship of the Pb(II) peak current with respect to the logarithm of the target DNA concentrations from 0.1 pmol L 1 to 10 nmol L 1, and the limit of detection was 0.03 pmol L 1. The biosensor exhibited effective discrimination between a single-base mismatched sequence and the fully complementary target DNA. These “green” biosensors are inexpensive, lend themselves to easy mass production, and hold promise for ultrasensitive bioassay formats.  相似文献   

19.
A simple, ultrasensitive and selective electrochemical DNA biosensor based on DNA concatamers is described, which can detect as low as 100 aM target DNA even in complex samples.  相似文献   

20.
Conjugated phenylene-vinylene polymers are widely used in organic light-emitting and photovoltaic devices. The comprehension of the optical properties upon charge injection is of crucial importance for the improvement of such organoelectronic devices. The processes of electrochemical doping, electrolyte diffusion, and degradation have been studied by cyclic voltammetry and chronoamperometric methods. Kinetic studies by in situ fluorescence spectroscopy have been used for the determination of the mobility of charge carriers in the polymer making used of electrochemical Stern-Volmer analysis. The mobility of holes for MDMO-PPV measured by this method was 2.5 x 10(-7) cm2 V s(-1). Non-Faradic variations of the fluorescence after doping-dedoping cycles have been related to morphological changes in the polymeric layer. The evolution of the fluorescence obeys a first-order kinetics law, similarly to the trend of the variation of volume during gel shrinking.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号