首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A recent study has demonstrated the feasibility of obtaining Ferguson plots in agarose gel electrophoresis, using a single pore gradient gel. We now report three remedies for defects in the previous experimental approach: (i) UV-absorbing media for density stabilization of the gel is avoided by replacing 5-(N-2,3-dihydroxypropylacetamido)-2,4,6-triiodo-N,N'-bis(2,3-dihy droxypropyl) isophthalamide (Nycodenz) with heavy water; this renders the method applicable to ethidium bromide-labeled DNA. (ii) The density stabilizing medium is kept from having an effect on field strength. (iii) Data collection by uninterrupted time-lapse photography is possible by using an apparatus with a quartz window. These three measures make the method practical for the gel electrophoretic identification and physical characterization of DNA species, potentially up to 50 kb in size.  相似文献   

2.
D Wheeler  D Tietz  A Chrambach 《Electrophoresis》1992,13(9-10):604-608
Abnormally slow migration of DNA is conventionally viewed as being due to an abnormal conformation relative to "linear" standards. The evidence for this rests on a few instances where nonlinear DNA structures have been established by independent methods and yield low mobilities relative to standards. Transverse pore gradient gel electrophoresis of authentically bent kinetoplast DNA and of an upstream activator sequence (UAS) of an E. coli operon promoter shows in addition that curves of migration distance vs. gel concentration ("Ferguson curves") of such abnormally conformed DNA differ from those of "linear" standards. Since Ferguson curves are interpretable with regard to molecular size in concordance with a mathematical model (Ogston model), transverse pore gradient gel electrophoresis provides a simple means of correlating abnormally slow migration of DNA with molecular size. In addition, transverse pore gradient gel electrophoresis is able to distinguish between DNA banding which exhibits a steeper dependence on gel concentration than "linear" standards from one which shows the same dependence. The former appears characteristic of circularly bent DNA and gives rise to a substantial retardation, the latter of bending across a knot or kink in the DNA chain associated with a relatively minor retardation relative to standards. Circularly bent restriction fragments formed from kinetoplast DNA retain the characteristic intersecting Ferguson curves on the transverse pore gradient gel. Another authentically "abnormal" DNA structure recognizable on transverse pore gradient gels is supercoiled DNA derived from the reaction of topoisomerase with a plasmid. Different lengths of supercoiled sequences give rise to parallel Ferguson curves clearly intersecting with those of linear standards.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
The representative beta-hydroxyethylmorpholinium-chloride-bicinate moving boundary with a trailing ion net mobility relative to Na+ of 0.41, detected by precipitation of chloride with silver nitrate, exhibits a decreasing chloride mobility at increasing polyacrylamide gel concentrations from 3.5 to 45%T, 5%CBis. This decrease, largely due to an increase of field strength at constant current, is described by a convex* plot of log (mobility) vs. %T (Ferguson plot) and signifies that chloride/bicinate are sieved by the gel. In agarose gels, the same plot of mobility vs. gel concentration is constant below 7% gel concentration, since in those gels field strength and migration rate remain the same within that gel concentration range. Both in polyacrylamide and in agarose gels the displacement rate of the chloride-bicinate boundary as a function of the time of electrophoresis or distance migrated remains invariant within 15%. The plot of log (mobility) vs. gel concentration extrapolated to 0%T is 5.85 and 5.41 (10(-5) cm2s-1V-1) for polyacrylamide and for agarose (SeaKem HGT-P,FMC) gels, respectively. The slightly decreased mobility intercept at 0%T for agarose is presumably due either to the electroendosmotic properties of agarose HGT-P and/or failure to Sufficiently take into account the flattening of the Ferguson plot in the polyacrylamide concentration range below 3% in which a transition from a gel to a fluid (sol) medium takes place.  相似文献   

4.
Z Buzás  Z Boldogkoi 《Electrophoresis》1999,20(14):2838-2840
It has been known since 1990 that DNA curvature can be recognized on transverse pore gradient gels by an intersection of "Ferguson curves" with those of DNA size standards. The miniaturized PhastSystem polyacrylamide gels allow one to detect DNA curvature effortlessly and fast and at great economy of sample relative to alternative methods of electrophoresis. Using the transverse gradient gel electrophoresis method, it was found that the 660 bp length subfragment of the matrix attachment region (MAR) sequence of the chicken lysosyme gene migrates as a fragment of 800-900 bp length. When subjected to digestion with the restriction enzyme HaeIII, the fragment gives rise to two species of 248 and 412 bp length, respectively. The Ferguson curves of both species intersect with those of DNA size standards, indicating that both exhibit curvature. Only the curvature of the 412 bp fragment conforms to prediction. Ethidium bromide abolishes the effect of curvature on the fragment, reducing its apparent size from 900 to 660, the value obtained by agarose gel electrophoresis.  相似文献   

5.
Four species of linear DNA and the first four members of a linking series, generated by treatment of plasmid DNA (PUC19, 2.7 kb) with mitochondrial topoisomerase I, were differentiated by transverse agarose pore gradient gel electrophoresis. The experimental curves of migration distance vs. agarose concentration (Ferguson curves) of supercoiled DNA exhibit a steeper trajectory than those of linear DNA of the same size range. As a consequence, the four supercoiled species exhibit an increase in apparent size (relative to linear DNA standards) with increasing agarose concentration. Both the crossing of the Ferguson curves with those of linear standards as well as the apparent size increase with agarose concentration can serve to detect supercoiled plasmid-sized DNA in mixtures with linear DNA.  相似文献   

6.
The electric field dependence of the electrophoretic mobility of linear DNA fragments in agarose gels was reinvestigated in order to correct the observed mobilities for the different temperatures actually present in the gel during electrophoresis in different electric field gradients. When corrected to a common temperature, the electrophoretic mobilities of DNA fragments less than or equal to 1 kilobase pairs (kbp) in size were independent of electric field strength at all field strengths from 0.6 to 4.6 V/cm if the gels contained less than or equal to 1.4% agarose. The mobilities of larger DNA fragments increased approximately linearly with electric field strength. If the agarose concentration was higher than 2%, the mobilities of all DNA fragments increased with increasing electric field strength. The electric field dependence of the mobility was larger in gels cast and run in Tris-borate buffer (TBE) than in gels cast and run in Tris-acetate buffer (TAE), and was more pronounced in gels without ethidium bromide incorporated in the matrix. Ferguson plots were constructed for the various DNA fragments, both with and without extrapolating the temperature-corrected mobilities to zero electric field strength. Linear Ferguson plots were obtained for all fragments less than or equal to 12 kbp in size in agarose gels less than or equal to 1.4% in concentration if the mobilities were first extrapolated to zero electric field strength. Concave upward curvature of the Ferguson plots was observed for DNA fragments greater than or equal to 2 kbp in size at finite electric field strengths. Convex downward curvature of the Ferguson plots was observed for DNA fragments greater than or equal to 1 kbp in size in agarose gels greater than or equal to 2% in concentration. The mobilities of the various DNA fragments, extrapolated to zero agarose concentration and zero electric field strength, decreased with increasing DNA molecular weight; extrapolating to zero molecular weight gave an "intrinsic" DNA mobility of 2.7 x 10(-4) cm2/Vs at 20 degrees C. The pore sizes of LE agarose gels cast and run in TAE and TBE buffers were estimated from the mobility of the DNA fragments.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

7.
In contrast to Ferguson plots based on relative mobilities, Ferguson plots of proteins in polyacrylamide gel electrophoresis based on their absolute mobilities were found to be linear under unusual polymerization conditions which yield relatively wide gel fibers and a low total fiber length per unit weight, but not under previously and commonly used conditions. These linear Ferguson plots in gels of 1, 3 and 5% crosslinking intersect at a single gel concentration between 1 and 2% T (M-point). It is postulated that the measure of free mobility of the proteins is the M-point, and not the intercept of their Ferguson plots with the mobility axis as assumed previously. This postulate abolishes the well-known paradoxical interpretation of the increase with %C of the linearly extrapolated intercept of the Ferguson plot with the log(mobility) axis (designated Yo) in terms of free mobility. The postulate is also compatible with the interpretation of the points of intersection of the Ferguson plots of oligomeric series of proteins at finite gel concentrations (designated mu-points) as their common free mobilities.  相似文献   

8.
The mobilities of various DNA fragments in two normally migrating molecular weight ladders were studied in polyacrylamide gels containing different concentrations of the crosslinker N,N'-methylenebisacrylamide (Bis). The acrylamide concentration ranged from 2.5-10.5%T (w/v); the Bis concentration ranged from 0.5-10%C (w/w), with respect to total acrylamide. Ferguson plots were constructed for each of the DNA fragments in gels of each composition. The Ferguson plots of the different multimers in each molecular weight ladder were nearly parallel in gels containing 0.5-3%C, converged close to a common intercept at zero gel concentration in gels containing 4%C, and crossed at approximately 1.5%T in gels containing 5 and 10%C. If the mobilities observed for the different DNA fragments at zero gel concentration were also extrapolated to zero DNA molecular weight, a common limiting mobility was observed in gels of all crosslinker concentrations. This limiting mobility was approximately equal to the free solution mobility of DNA. The effective pore radius of each gel was estimated from Ferguson plots based on relative mobilities, using the mobility of the smallest DNA fragment in each molecular weight ladder as the reference mobility. The calculated gel pore radii ranged from 142 nm to 19 nm, respectively, for gels containing 4.6%T, 1.5%C, and 10.5%T, 5 or 10%C. These pore radii are an order of magnitude larger than previously accepted values, but are consistent with scanning electron microscope measurements (Rüchel, R., et al., J. Chromatogr. 1978, 42, 77-90).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
In the determination of the free mobility, related to the surface net charge, by quantitative gel electrophoresis, the previous arbitrary extrapolation of Ferguson plots from the lowest gel concentrations that give a mechanically stable gel to 0% T has recently been replaced by measurement of mobilities across that concentration range, using the addition of 0.5% agarose to polyacrylamide at the various low concentrations in application to a DNA fragment 155 bp in size (Orbán, L. et al., in preparation). The present study applies that approach to several proteins and DNA fragments smaller than 1300 bp, using 0.4% agarose in polyacrylamide gels of varying concentration. The intercepts of the plots with the mobility axis provide experimental data by which the free mobility in polyacrylamide gel electrophoresis can be estimated for molecules not significantly retarded in their migration at the agarose concentration admixed to polyacrylamide. Across the gel concentration range below 3% T, in the presence of agarose, the Ferguson plots of proteins and DNA fragments are convex. It was shown by mass spectrometry that this convex curvature of the plots in the mixed polymer is not significantly due to low polymerization efficiency in the concentration range of liquid polyacrylamide (below 3%T).  相似文献   

10.
A paradox was observed in a previous study of the electrophoresis of linear DNA fragments in agarose gels (D. L. Holmes and N. C. Stellwagen, Electrophoresis 1990, 11, 5-15). The pore size of the agarose matrix was more accurately determined if the root-mean-square radius of gyration was used to measure DNA macromolecular size. However, the Ogston equations were obeyed and other gel parameters such as the apparent fiber radius and fiber volume appeared to be better described if the geometric mean radius was used to measure DNA size. This paradox can be resolved if relative mobilities (with respect to the smallest DNA molecule in the data set) are used to construct the Ferguson plots, instead of absolute mobilities. Using relative mobilities and the root-mean-square radius of gyration, the Ogston equations are obeyed and the pore size of the matrix is consistent with values determined by other methods.  相似文献   

11.
Sodium dodecyl sulfate-polyacrylamide gel electrophoresis without a stacking gel minimizes lateral spreading of protein when samples are applied in agarose wells and allows high sample throughput (6 samples/cm gel width). The method is simple and convenient to use and gives comparable resolution to the standard method with 4-20% or 6-30% polyacrylamide gradient gels. Best results are obtained when the upper zone of the separating gel is of low polyacrylamide concentration. This indicates a need for the molten agarose to penetrate and anneal with the separating gel.  相似文献   

12.
A desktop computer program evaluating physical properties of DNA and bacteriophages is presented. The analysis is based on data obtained from capillary and submarine-type agarose electrophoresis. Native molecular/particle properties and properties of the gel (or polymer) medium can be derived from electrophoresis at several gel concentrations. This is done conveniently by a computerized evaluation of the semi-logarithmic plot of mobility vs. gel concentration, designated the Ferguson plot. In application to most proteins, this plot is linear and computer programs exist to evaluate it. However, nonlinear Ferguson plots have assumed great importance in view of the fact that the plots are concave for DNA. Similarly, convex plots are important since they prevail in the electrophoresis of large particles in agarose. The computer program reported here is the first to (i) address concave Ferguson plots and (ii) allow for the evaluation of both cases using a desktop computer. Program ELPHOFIT version 2.0, a Macintosh application, is available upon request.  相似文献   

13.
G B Smejkal  H F Hoff 《Electrophoresis》1992,13(1-2):102-103
We describe a modification of transverse pore gradient gel electrophoresis in which pore size is regulated by crosslinker proportion (%C) rather than by total monomer concentration (%T). We electrophoresed plasma lipoprotein [a] transversely across linear N,N'-methylenebisacrylamide gradients and measured mobility as a function of %C. This method allows for the simultaneous assessment of pore sizes generated over a wide range of crosslinker proportions.  相似文献   

14.
Gel electrophoretic analysis of DNA branched junctions   总被引:5,自引:0,他引:5  
Gel electrophoresis has provided much of the detailed information we have about the properties of DNA junctions, stable branched molecules formed from oligonucleotide or polynucleotide strands. Here we review these applications, and present the results of an electrophoretic investigation of conformationally restricted junctions formed by covalently connecting two different pairs of strands in a junction with four arms. Native gel electrophoresis is employed to establish the formation and stoichiometry of the multistrand complexes. Ferguson analysis of native gel mobility shows that junctions have retardation coefficients that are distinct from those of linear DNA duplexes. Denaturing gel electrophoresis is the primary tool for characterizing junctions that have been covalently linked together to form both linear and macrocyclic oligomers of junctions (oligojunctions). Radioactively labelled strands enable one to monitor the progress of the ligation reaction: both linear and closed cyclic molecules result, and these can be distinguished by applying Ferguson analysis to denaturing gels. Combinations of exonuclease III, restriction enzymes and sequencing reactions have been applied to oligojunction molecules, and the results are all analyzed on denaturing gels. Junctions containing intramolecular "tethers" that restrict the conformation freedom of the complex comprise a new system for analyzing the conformations of branched molecules. In these tethered junctions, the ability of arms to move relative to each other is restricted substantially by covalently connecting pairs of arms in the original complex with short, flexible loops. The two tethers used here constrain the helical domains of the structure to be roughly parallel or anti-parallel. In this article, we use Ferguson analysis to compare two tethered junctions with an untethered junction. At high gel concentrations, the mobility of the untethered complex is found to be closer to that of the molecule tethered anti-parallel than to the one tethered parallel. Curvature in the Ferguson plots for all three of these junctions is detected over a range of compositions. At low gel concentrations, differences in electrophoretic mobility persist, suggesting that the untethered junction differs in charge as well as conformational freedom from the tethered analogs. We expect that studies of this kind will be able to define the conformational repertoire of junctions of different kinds, and to explore the effects of electrophoresis on these states.  相似文献   

15.
The mobilities of normal and anomalously migrating DNA fragments were determined in polyacrylamide gels of different acrylamide concentrations, polymerized with 3% N,N'-methylenebisacrylamide as the crosslinker. The DNA samples were a commercially available 123-bp ladder and two molecular weight ladders containing multiple copies of two 147-base pair (bp) restriction fragments, obtained from the MspI digestion of plasmid pBR322. One of the 147 bp fragments is known to migrate anomalously slowly in polyacrylamide gels. Ferguson plots were constructed for all multimer ladders, using both absolute mobilities and relative mobilities with respect to the smallest DNA molecule in each data set. If the retardation coefficients were calculated from the relative mobilities, and the rms radius of gyration was used as the measure of DNA size, the Ogston equations were obeyed and the gel fiber parameters could be calculated. The effective pore sizes of the gels were estimated from the gel concentration at which the mobility of a given DNA molecule was reduced to one-half its mobility at zero gel concentration. The estimated pore radii ranged from approximately 130 nm for 3.5% gels to approximately 70 nm for 10.5% gels. These values are much larger than the pore sizes previously determined for the polyacrylamide matrix.  相似文献   

16.
N C Stellwagen 《Electrophoresis》1992,13(9-10):601-603
Previous studies have shown that the apparent pore size of agarose gels is dependent on the buffer in which the gel is cast and run (D.L. Holmes and N.C. Stellwagen, Electrophoresis 1990, 11, 5-15; N.C. Stellwagen and D.L. Holmes, Electrophoresis 1990, 11, 649-652). However, these studies, based on the mobility of DNA restriction fragments, neglected the effect of electroendosmosis. By measuring the mobility of vitamin B12 under various experimental conditions, it is shown here that electroendosmosis is highly buffer-dependent. When the observed mobilities of DNA are corrected for electroendomosis, the apparent pore radii of agarose gels are found to be independent of the casting buffer.  相似文献   

17.
A procedure was developed for casting thin-layer multistrip polyacrylamide gels and using them for the simultaneous gel electrophoresis at several gel (Ferguson plot analysis) at the sub-microgram load level, using silver staining, autoradiography and, potentially, blotting for detection. The lower viscosity of polymerization mixtures, compared to agarose gelation mixtures, required the redesign of the multistrip cassette with separation of channels by rubber gaskets and the application of a cassette press. The lowered viscosity also required addition of 35% sucrose and an increased rate of polymerization in application to multistrip gels formed on a common NetFix backing. The present design allows one to obtain Ferguson plots exemplified by those of 32P-labeled DNA followed by autoradiographic detection.  相似文献   

18.
DNA fragments up to 9 kb in size were stacked and separated by polyacrylamide gel electrophoresis, and those up to 50 kb in size by agarose gel electrophoresis, using a discontinuous buffer system. Polyacrylamide gels at pH 8.9, 2 degrees C, 0.01 M ionic strength, yielded sharp bands with DNA loads of 8 micrograms/cm2 of gel of a mixture of 19 DNA fragments in the size range of 72-23130 bp, while agarose gels at pH 8.5, 25 degrees C, provided well-resolved, unperturbed bands at 0.04 M ionic strength with DNA loads of 1 microgram/cm2 of the same mixture. Note that the ionic strength of the agarose gels is comparable to the conventionally used 0.5 x TBE (Tris-borate-EDTA) buffer, while that successfully applied to polyacrylamide is seven-fold less than the ionic strength of conventionally used 1 x TBE buffer, with a substantially shorter duration of electrophoresis as a result. The application of a discontinuous buffer system to the gel electrophoresis of DNA results in (i) Band identification by Rf, the migration distance relative to a sharply defined "buffer front" (moving boundary). This is sufficiently labor saving, compared to determining absolute mobilities, so as to render practical the expression of bands as numbers, with benefits for data storage, statistical manipulations and physico-chemical exploitation of mobility data. The use of Rf's also circumvents loss of precision in mobility measurement resulting from progressive band spreading of dye bands used as a front. (ii) A uniformly and highly concentrated starting zone, beneficial to resolution, is obtained, without the losses by which separate concentration steps are usually burdened.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Crude extracts of turnip crinkle virus upon agarose gel electrophoresis yield (i) virus patterns unperturbed by contaminants; (ii) plots of mobility vs. gel concentration (Ferguson plots) parallel with those of the purified virus. The parallelism suggests similarity in size and shape but a lower net charge for the crude virus. This result is obtained when gel electrophoresis is carried out either in a continuous buffer or in a discontinuous (moving boundary electrophoresis) buffer system. The latter mode has the substantial benefit of electrophoretic (auto-)concentration of dilute virus sample prior to resolution. Thus, the Ferguson plot analysis in a discontinuous buffer system of turnip crinkle virus can be viewed as a model procedure for the physical identification of other viruses contained in dilute extracts, feasible even in the absence of a prior knowledge as to the nature of, or isolation of, the virus.  相似文献   

20.
A new protocol for conducting two-dimensional (2D) electrophoresis was developed by combining the recently developed agarose native gel electrophoresis with either vertical sodium dodecyl sulfate (SDS) polyacrylamide gel electrophoresis (PAGE) or flat SDS agarose gel electrophoresis. Our innovative technique utilizes His/MES buffer (pH 6.1) during the first-dimensional (1D) agarose native gel electrophoresis, which allows for the simultaneous and clear visualization of basic and acidic proteins in their native states or complex structures. Our agarose gel electrophoresis is a true native electrophoresis, unlike blue native–PAGE, which relies on the intrinsic charged states of the proteins and their complexes without the need for dye binding. In the 2D, the gel strip from the 1D agarose gel electrophoresis is soaked in SDS and placed on top of the vertical SDS–PAGE gels or the edge of the flat SDS–MetaPhor high-resolution agarose gels. This allows for customized operation using a single electrophoresis device at a low cost. This technique has been successfully applied to analyze various proteins, including five model proteins (BSA, factor Xa, ovotransferrin, IgG, and lysozyme), monoclonal antibodies with slightly different isoelectric points, polyclonal antibodies, and antigen–antibody complexes, as well as complex proteins such as IgM pentamer and β-galactosidase tetramer. Our protocol can be completed within a day, taking approximately 5–6 h, and can be expanded further into Western blot analysis, mass spectrometry analysis, and other analytical methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号