首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Reactive oxygen species (ROS) can damage DNA. Although a number of single nucleobase lesions induced by ROS have been structurally characterized, only a few intrastrand cross-link lesions have been identified and characterized, and all of them involve adjacent thymine and guanine or adenine. In mammalian cells, the cytosines at CpG sites are methylated. On the basis of the similar reactivity of 5-methylcytosine and thymine toward hydroxyl radical and the similar orientation of adjacent thymine guanine (TG) and 5-methylcytosine guanine (mCG) in B-DNA, we predict that the cross-link lesion, which was identified in TG and has a covalent bond formed between the 5-methyl carbon atom of T and the C8 carbon atom of G, should also form at mCG site. Here, we report for the first time the independent generation of 5-(2'-deoxycytidinyl)methyl radical, and our results demonstrate that this radical can give rise to the predicted novel intrastrand cross-link lesion in dinucleoside monophosphates d(mCG) and d(GmC). Furthermore, we show that the cross-link lesion can also form in d(mCG) from gamma irradiation under anaerobic conditions.  相似文献   

2.
The yields of formation of 5-hydroxy-5,6-dihydrothymidine and cis-5,6-dihydroxy-5,6-dihydrothymidine in the radiolysis of thymidine, thymidine 5"-monophosphate, and DNA in N2O-saturated aqueous solutions were measured in order to study the mechanism of nucleic acid radiolysis. The above compounds were found to be main radiolysis products upon irradiation of thymidine and thymidine 5"-monophosphate. However, these compounds were formed in very low yields upon irradiation of DNA, and they amounted to less than 2% of the degradation yield of DNA thymine. The yield of the 5-hydroxythymidin-6-yl radical was evaluated by determining the amount of 5-hydroxy-5,6-dihydrothymidine formed in the radiolysis of the above compounds in the presence of cysteamine.  相似文献   

3.
Abstract —The near-UV photosensitization of thymine by 2-methyl-1,4-naphthoquinone in oxygenated aqueous solution leads to the formation of nine major thymine-derived products. Six of the photoproducts, representing 70% of the initial thymine loss, are also known to be formed by γ-ray or X-ray irradiation of oxygenated water solutions of thymine. They include the cis and trans isomers of 5-hydroperoxy-6-hydroxy-5,6-dihydrothymine, the cis and trans thymine glycols, 5-hydroxy-5-methylhydantoin, and N-formyl-N'-pyruvylurea. The three remaining major products, accounting for a further 25% of the initial thymine loss, are thymine di-adducts of a type not previously reported. Preliminary characterization of these novel photoproducts, based on their UV absorption, mass spectra, and proton and carbon-13 nuclear magnetic resonance spectra, suggests that in each of the three, the thymine moieties are linked by an N(1)-C(5) or N(1)-C(6) bond. A thymine cation radical is implicated as the common precursor of all 9 products. Accordingly. pyrimidine photosensitization by 2-methyl-1,4-naphthoquinone serves as a model system for studying the chemical consequences of radiation-induced ionization of the DNA bases.  相似文献   

4.
Abstract An extensive study of the fluorescence characteristics of pyrimidine (6-4) pyrimidone photoadducts, a major class of far-UV-induced DNA lesions, was carried out on dinucleoside monophosphate (6-4) photoadducts, including thymidylyl-(3'→ 5')-thymidine (TpT), 2'-deoxycytidylyl-(3'-5')-thymidine, thymidylyl-(3'→ 5')-2'-deoxy-cytidine, 2'-deoxyuridylyl-(3'→ 5')-thymidine, 5-methyl-2'-deoxycytidylyl-(3'-5')-thymidine (6-4) photoadducts and the corresponding base (6-4) photoadducts, 6-4'-(5'-methylpyrimidin-2'-one) thymine (TT), 5-hydroxy-6-4'-(5'-methylpyrimidin-2'-one)-5,6-dihydrothymine (CT), 5-amino-6-4'-(pyrimidin-2'-one)-5,6-dihydrothymine (UC) obtained by mild acidic hydrolysis of the former derivatives. The fluorescence quantum yield (ΦF) of these compounds was found to depend on one hand, on the nature of the two bases involved and the base substituent and, on the other hand, on the presence of the phosphate group. The hydrolysis of the phosphodiester bond was shown to enhance ΦF, the larger effect being observed in the case of the thymine-thymine photoadducts with a seven-fold increase of the ΦF value in the case of TT as compared to TpT (0.21 and 0.03, respectively). These results are discussed in terms of structural considerations.  相似文献   

5.
Photoinduced reduction of thymine glycol in oligodeoxynucleotides was investigated using either a reduced form of flavin adenine dinucleotide (FADH(-)) as an intermolecular electron donor or covalently linked phenothiazine (PTZ) as an intramolecular electron donor. Intermolecular electron donation from photoexcited flavin (FADH(-)) to free thymidine glycol generated thymidine in high yield, along with a small amount of 6-hydroxy-5,6-dihydrothymidine. In the case of photoreduction of 4-mer long single-stranded oligodeoxynucleotides containing thymine glycol by *FADH(-), the restoration yield of thymine was varied depending on the sequence of oligodeoxynucleotides. Time-resolved spectroscopic study on the photoreduction by laser-excited N,N-dimethylaniline (DMA) suggested elimination of a hydroxyl ion from the radical anion of thymidine glycol with a rate constant of approximately 10(4) s(-1) generates 6-hydroxy-5,6-dihydrothymidine (6-HOT(*)) as a key intermediate, followed by further reduction of 6-HOT(*) to thymidine or 6-hydroxy-5,6-dihydrothymdine (6-HOT). On the other hand, an excess electron injected into double-stranded DNA containing thymine glycol was not trapped at the lesion but was further transported along the duplex. Considering redox properties of the nucleobases and PTZ, competitive excess electron trapping at pyrimidine bases (thymine, T and cytosine, C) which leads to protonation of the radical anion (T(-)(*), C(-)(*)) or rapid back electron transfer to the radical cation of PTZ (PTZ(+)(*)), is presumably faster than elimination of the hydroxyl ion from the radical anion of thymine glycol in DNA.  相似文献   

6.
5,6-Dihydro-2'-deoxyuridin-6-yl (1) was independently generated via photolysis of 3. The radical is an analogue of the major reactive species produced from thymidine upon reaction with hydroxyl radical, which is the dominant DNA-damaging agent produced by the indirect effect of gamma-radiolysis. Under aerobic conditions, the peroxyl radical (2) derived from 1 reacts approximately 82% of the time with either the 5'- or 3'-adjacent nucleotide to produce two contiguously damaged nucleotides, known as tandem lesions. The structures and distribution of tandem lesions were investigated using probes that selectively detect abasic sites, ESI-MS/MS, and competition kinetics. In addition to 2-deoxyribonolactone, nonoxidized abasic sites were detected. 18O-Labeling verified that H2O was the source of oxygen in the abasic sites, but that O2 was the source of the oxygen in the 5,6-dihydro-6-hydroxy-2'-deoxyuridine derived from 2. ESI-MS/MS experiments, in conjunction with isotopic labeling, identified several products and provided direct evidence for peroxyl radical addition to the adjacent thymine bases. Kinetic studies revealed that peroxyl radical addition to the 5'-thymine was favored by approximately 4-5-fold over C1'-hydrogen atom abstraction from the respective deoxyribose ring, and that 2-deoxyribonolactone formation accounts for approximately 11% of the total amount of tandem lesions produced. These results suggest that tandem lesions, whose biochemical effects are largely unknown, constitute a major family of DNA damage products produced by the indirect effect of gamma-radiolysis.  相似文献   

7.
Cyclobutane pyrimidine dimers and pyrimidine(6-4)pyrimidone adducts represent the two major classes of far-UV-induced DNA photoproducts. Because of the lack of appropriate detection methods for each individual photoproduct, little is known about the effect of the sequence on their formation. In the present work, the photoproduct distribution obtained upon exposure of a series of dinucleoside monophosphates to 254 nm light was determined. In the latter model compounds, the presence of a cytosine, located at either the 5′- or the 3′- side of a thymine moiety, led to the preferential formation of (6-4) adducts, whereas the cis-syn cyclobutane dimer was the main thymine-thymine photoproduct. In contrast, the yield of dimeric photoproducts, and particularly of (6-4) photoadducts, was very low upon irradiation of the cytosine–cytosine dinucleoside monophosphate. However, substitution of cytosine by uracil led to an increase in the yield of (6-4) photoproduct. It was also shown that the presence of a phosphate group at the 5′- end of a thymine-thymine dinucleoside monophosphate does not modify the photoproduct distribution. As an extension of the studies on dinucleoside monophosphates, the trinucleotide TpdCpT was used as a more relevant DNA model. The yields of formation of the thymine-cytosine and cytosine–thymine (6-4) photoproducts were in a 5:1 ratio, very close to the value obtained upon photolysis of the related dinucleoside monophosphates. The characterization of the two TpdCpT (6-4) adducts was based on H NMR, UV and mass spectroscopy analyses. Additional evidence for the structures was inferred from the analysis of the enzymatic digestion products of the (6-4) adducts of TpdCpT with phosphodiesterases. The latter enzymes were shown to induce the quantitative release of the photoproduct as a modified dinucleoside monophosphate in a highly sequence-specific manner.  相似文献   

8.
Nucleobase radicals are the major family of reactive intermediates produced when nucleic acids are exposed to γ-radiolysis. The 5,6-dihydrouridin-5-yl radical (1), the formal product of hydrogen atom addition and a model for hydroxyl radical addition, was independently generated from a ketone precursor via Norrish Type I photocleavage in single and double stranded RNA. Radical 1 produces direct strand breaks at the 5'-adjacent nucleotide and only minor amounts of strand scission are observed at the initial site of radical generation. Strand scission occurs preferentially in double stranded RNA and in the absence of O(2). The dependence of strand scission efficiency from the 5,6-dihydrouridin-5-yl radical (1) on secondary structure under anaerobic conditions suggests that this reactivity may be useful for extracting additional RNA structural information from hydroxyl radical reactions. Varying the identity of the 5'-adjacent nucleotide has little effect on strand scission. Internucleotidyl strand scission occurs via β-elimination of the 3'-phosphate following C2'-hydrogen atom abstraction by 1. The subsequently formed olefin cation radical yields RNA fragments containing 3'-phosphate or 3'-deoxy-2'-ketonucleotide termini from competing deprotonation pathways. The ketonucleotide end group is favored in the presence of low concentrations of thiol, presumably by reducing the cation radical to the enol. Competition studies with thiol show that strand scission from the 5,6-dihydrouridin-5-yl radical (1) is significantly faster than from the 5,6-dihydrouridin-6-yl radical (2) and is consistent with computational studies using the G3B3 approach that predict the latter to be more stable than 1 by 2.8 kcal/mol.  相似文献   

9.
Here, we showed that Pyrex-filtered UV light irradiation of d((Br)CA) gave rise to three types of intrastrand cross-link products, that is, d(C[5-N6]A), d(C[5-2]A), and d(C[5-8]A), where the C5 carbon atom of cytosine is covalently bonded to the N6 nitrogen atom, C2, and C8 carbon atoms of adenine, respectively. Furthermore, we demonstrated by LC-MS/MS that the UV irradiation of a 5-bromocytosine-containing duplex oligodeoxynucleotide (ODN) led to the formation of five cross-link products, that is, C[5-N6]A, C[5-2]A, C[5-8]A, A[2-5]C, and A[8-5]C, under both aerobic and anaerobic conditions. LC-MS/MS quantification results showed that the yields for the formation of these cross-link products are different. The presence of molecular oxygen reduces the yields for the formation of all cross-link products except A[2-5]C. To our knowledge, this is the first report about the formation of intrastrand cross-link products between cytosine and adenine in duplex DNA. The chemistry discovered here may facilitate the future preparations of oxidative cross-link lesion-bearing substrates for biochemical and biophysical studies.  相似文献   

10.
Pyrex-filtered UV light irradiation of d(BrCG) and 5-bromocytosine-containing duplex DNA leads to facile formation of a cross-link lesion between the C5 carbon atom of cytosine and the C8 carbon atom of its adjacent guanine. A similar cross-link lesion has been previously found in the X-ray irradiation mixture of d(CGTA).  相似文献   

11.
Recently we reported the identification and characterization of a novel cross-link lesion formed between two adjacent cytosines in d(CpC), which is the major product formed upon 365 nm photoirradiation of d(CpC) in the presence of 2-methyl-1,4-naphthoquinone. In this study we discuss the isolation and structure characterization of another cross-link lesion formed under the same irradiation condition. Electrospray ionization mass spectroscopy, tandem mass spectrometry and two-dimensional nuclear Overhauser effect spectroscopy results demonstrate that the C6 carbon atom of the 5' cytosine and the N3 nitrogen atom of the 3' cytosine are covalently bonded. In addition, the 5' cytosine moiety is deaminated and the C5 carbon atom in this cytosine is oxidized to a carbonyl group.  相似文献   

12.
Long-term exposure of nifedipine to daylight in ethanol gives 2,2"-bis[3,5-bis(methoxycarbonyl)-2,6-dimethylpyridin-4-yl]azoxybenzene and 6-hydroxy-1-methoxycarbonyl-2,4-dimethyl-5-oxo-5,6-dihydrobenzo[c][2,7]naphthyridine as the major products.  相似文献   

13.
Reaction of bromine with thymidine in aqueous solution produces, in high yield, the corresponding 5-bromo-6-hydroxy-5,6-dihydroderivative (thymidine bromohydrins). UVC photolysis of thymidine bromohydrins gives rise to a reactive intermediate that is converted into 5-(hydroxymethyl)-2'-deoxyuridine upon incubation in water. When the former compound is left in methanol, ethanol, or propanol, the corresponding 5-alkoxymethyl derivatives are produced. The proposed structure for the primary photolysis product of thymidine bromohydrins is a methide derivative of the thymine ring. This compound could be an interesting intermediate in the synthesis of methyl-substituted thymidine.  相似文献   

14.
5,6-Dihydro-5-hydroxythymidin-6-yl radical (1), the major reactive intermediate resulting from hydroxyl radical addition to C5 of the pyrimidine, is produced via 350 nm photolysis of a 2,5-dimethoxyphenylsulfide precursor (2). Competition between O(2) and thiol for 1 suggests that the radical reacts relatively slowly with β-mercaptoethanol compared to other alkyl radicals. Overall, aryl sulfide 2 should be an effective precursor for the major hydroxyl radical adduct of thymidine in DNA.  相似文献   

15.
An intrastrand cross-link lesion, in which two neighboring nucleobases are covalently tethered, has been site-specifically synthesized into defined sequence oligonucleotides in order to perform in vitro replication studies using either bacterial replicative or translesional synthesis polymerases. The investigated tandem base lesion that involves a cross-link between the methylene group of thymine and the C8 of an adjacent guanine residue has been prepared by UV-photolysis under anaerobic condition of the photolabile precursor 5-(phenylthiomethyl)-2'-deoxyuridine that has been site-specifically incorporated into a 9-mer oligonucleotide. After ligation, the lesion-containing modified oligonucleotide was used as a DNA template in primer extension reactions catalyzed by several DNA polymerases including the fragment Klenow exo-(Kf-) of E. coli polymerase I, the Thermus aquaticus polymerase (Taq pol) and the E. coli translesional DNA polymerase Pol IV (dinB). It was found that the primer extension reaction was stopped after the incorporation of the correct nucleotide dAMP opposite the 3'-thymine residue of guanine(C8-CH2) thymine lesion by Kf- and Pol IV; however it was noted that the efficiency of the nucleotide incorporation was reduced. In contrast, the Taq polymerase was totally blocked at the nucleotide preceding the tandem lesion. These results are strongly suggestive that the present intrastrand cross-link lesion, if not repaired, would constitute a blocking lesion for prokaryotic DNA polymerases, being likely lethal for the cell.  相似文献   

16.
Nucleobase radicals are the major reactive intermediates produced when hydroxyl radical reacts with nucleic acids. 5,6-Dihydrouridin-6-yl radical (1) was independently generated from a ketone precursor via Norrish Type I photocleavage in a dinucleotide, single-stranded, and double-stranded RNA. This radical is a model of the major hydroxyl radical adduct of uridine. Tandem lesions resulting from addition of the peroxyl radical derived from 1 to the 5'-adjacent nucleotide are observed by ESI-MS. Radical 1 produces direct strand breaks at the 5'-adjacent nucleotide and at the initial site of generation. The preference for cleavage at these two positions depends upon the secondary structure of the RNA and whether O(2) is present or not. Varying the identity of the 5'-adjacent nucleotide has little effect on strand scission. In general, strand scission is significantly more efficient under anaerobic conditions than when O(2) is present. Strand scission is more than twice as efficient in double-stranded RNA than in a single-stranded oligonucleotide under anaerobic conditions. Internucleotidyl strand scission occurs via β-fragmentation following C2'-hydrogen atom abstraction by 1. The subsequently formed olefin cation radical ultimately yields products containing 3'-phosphate or 3'-deoxy-2'-ketouridine termini. These end groups are proposed to result from competing deprotonation pathways. The dependence of strand scission efficiency from 1 on secondary structure under anaerobic conditions suggests that this reactivity may be useful for extracting additional RNA structural information from hydroxyl radical reactions.  相似文献   

17.
The reaction of 2,2,6,6-tetramethyl-4-piperidone-1-oxyl with radiation-formed 5,6-dihydro-6-hydroxy-thymin-5-yl and 5,6-dihydro-5-hydroxy-thymin-6-yl radicals in oxygen-free aqueous solution generate respectively two major products 2 and 3. The chemical assignment of both covalent addition derivatives is based mainly on 13C NMR and mass spectrometry (chemical ionization and field desorption) analysis. The N-oxide 2, which was prepared in a specific manner, undergoes Cope elimination and radical rearrangement within the pyrimidine ring.  相似文献   

18.
The role of 5-bromo-2'-deoxyuridine (BrdU) in the formation of sister chromatid exchanges (SCEs) in cells exposed to UV radiation was studied. Cells were unifilarily labelled (labelling of one strand of chromosomal DNA) with BrdU or biotin-16-2'-deoxyuridine (biotin-dU) and irradiated in G(1) phase of the cell cycle either with 254 nm, which is absorbed by all nucleobases including bromouracil (BrU) or with 313 nm radiation, which is predominantly absorbed by the BrU moiety. Elevated SCE frequencies were observed in cells irradiated at 254 nm (1.2 and 3.0 J m(-2)) which were pre-labelled with BrdU or biotin-dU. Following irradiation at 313 nm (38 and 96 J m(-2)) a statistically elevated SCE frequency was observed in cells pre-labelled with BrdU but not with biotin-dU. In cells pre-labelled with BrdU, UV-radiation at 254 nm was 50-80 times more effective in inducing SCEs than that at 313 nm. This result can be accounted for by the fact that in BrdU-DNA the cross-section for uracilyl radical and bromine atom formation is approximately 100-fold higher at 254 nm than that at 313 nm. Upon irradiation at 254 nm, BrdU had a strong sensitising effect on SCE induction: the SCE frequencies observed in cells pre-labelled with BrdU are approximately 6 times higher than in cells pre-labelled with biotin-dU. From this it follows that BrdU-induced damage is responsible for more than 80% of the SCEs formed in UV irradiated cells unifilarily labelled with BrdU. Based on photochemical considerations and the fact that chemical agents which form DNA interstrand cross-links are among the most potent inducers of SCEs, we propose that an interstrand cross-link may be the major lesion leading to SCEs in BrdU-labelled cells.  相似文献   

19.
5,6-Dihydropyrimido[5′,4′: 5,6]pyrido[1,2-a]benzimidazole and pyrimido[4′,5′: 4,5]pyrimido[1,6-a]-benzimidazole derivatives were synthesized starting from 3-[4-hydroxy-6-methyl(hydroxy)-2-phenylpyrimidin-5-yl]propanoic and 4-hydroxy-2-phenylpyrimidine-5-carboxylic acids. New 6-sulfanyl-substituted benzimidazo-[1,2-c]quinazolines were also prepared.  相似文献   

20.
A comparative study of the radiolysis of poly(uridylic acid) and poly(methyluridylic acid) in aqueous solutions saturated with N2O was performed. The radiation-chemical yields of formation of terminal phosphate groups, intact bases, 5-hydroxy-5,6-dihydrouracil, and 5-hydroxy-5,6-dihydro-3-methyluracil and the radiation-chemical yields of decomposition of these two polynucleotides were measured. Methylation was found to inhibit almost completely the formation of terminal phosphate groups and intact bases. It was suggested that the uracil-N(3)-yl radical can be a precursor of strand breaks in poly(uridylic acid).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号