首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Greenhouse gas (GHG) production and emission from paddy soils impacts global climate change. Soil particle size fractions (PSFs) of different sizes act as soil microhabitats for different kinds of microbial biota with varying conditions of redox reactions and soil organic matter (SOC) substrates. It is crucial to understand the distribution of soil microbial community structure within PSFs and linkage to the GHG production from paddy soils of China. The change of bacterial and methangenic archaeal community and activity relating to CH4 and CO2 production with PSFs under different fertilizer applications was studied in this paper. The fertilization trial was initiated in a paddy soil from the Tai Lake region, Jiangsu, China with four treatments of non-fertilized (NF), fertilized with inorganic fertilizers only (CF), inorganic with pig manure (CFM) and inorganic with straw return (CFS), respectively since 1987, and the PSFs (<2 μm, 2–20 μm, 20–200 μm, and 200–2000 μm) were separated by a low energy sonication dispersion procedure from undisturbed samples. Analysis of bacterial community within different size particles was conducted by PCR-DGGE. The results indicated significant variation of bacterial community structure within different PSFs. The methane was predominantly produced in the coarser fractions, while more species and higher diversity of bacteria survived in the size of <2 μm fractions, in which the bacterial community structure was more significantly affected by fertilizer application practices than in the other coarser fractions. Higher bacterial species richness and more diversities in the smallest size fractions was due to the vicinity between microbes, access to carbon resource outside the microaggregates, and smaller pore size as protective agent suitable habitats for microbes rather than high SOC. Whereas, higher CO2, CH4 production and methanogenic archaeal community in coarser fractions may be contributed to storage of labile organic carbon in these fractions. It indicated that availability of SOC in PSFs is mainly factor affected survival of methanogenic archaeal community structure, whereas, bacterium community habitation more affected by physical protection of their location in PSFs. Their activity greatly depended on liability of SOC access to PSFs. Fertilizer application caused more change of bacteria community in clay fraction and greatly increased bacterium and methanogen activity in coarser fractions but only a slight effect on methanogenic archaeal community in the particle size fractions.  相似文献   

2.
The purpose of this study was to investigate the role of pores in the fracture of circular compacts and to predict compact properties and critical crack lengths. Four different particle size fractions of sucrose, ranging from 20 to 500 microm, were compressed into circular discs (i.e. flat tablets) and rectangular beam specimens of porosity between 30 and 14%. Modelling of the relationship between the tensile strength of the circular discs and the compact porosity indicated extensive fragmentation during compaction for particles in the size range of 250-500 microm, accompanied by a change in densification mechanism for very coarse particles (355-500 microm). When determining the critical stress intensity factor from rectangular single edge notched beam specimens by 3-point bending, an apparent influence of particle size on the values could be seen, whereby here the results indicated that the critical particle size for fragmentation to occur is about 20-40 microm. It was possible to predict the critical stress intensity factor of the compacts from the median pore size and the tensile strength of the circular disc specimens by interpolation of the critical crack length for propagation to occur. The results indicated that for sucrose compacts regardless of their porosity, the pores themselves acted as stress concentrators, not as sharp cracks. For sucrose compacts, crack propagation hence proceeds most likely along grain boundaries.  相似文献   

3.
The molecular dynamics method, based on an empirical potential energy surface, was used to study the effect of catalyst particle size on the growth mechanism and structure of single-walled carbon nanotubes (SWNTs). The temperature for nanotube nucleation (800-1100 K), which occurs on the surface of the cluster, is similar to that used in catalyst chemical vapor deposition experiments, and the growth mechanism, which is described within the vapor-liquid-solid model, is the same for all cluster sizes studied here (iron clusters containing between 10 and 200 atoms were simulated). Large catalyst particles, which contain at least 20 iron atoms, nucleate SWNTs that have a far better tubular structure than SWNTs nucleated from smaller clusters. In addition, the SWNTs that grow from the larger clusters have diameters that are similar to the cluster diameter, whereas the smaller clusters, which have diameters less than 0.5 nm, nucleate nanotubes that are approximately 0.6-0.7 nm in diameter. This is in agreement with the experimental observations that SWNT diameters are similar to the catalyst particle diameter, and that the narrowest free-standing SWNT is 0.6-0.7 nm.  相似文献   

4.
Thermal study of boehmite nanofibers with controlled particle size   总被引:1,自引:0,他引:1  
Boehmite nanofiber materials with controlled particle size were synthesized without any surfactant by careful tuning of the hydrothermal temperatures, and followed by a series of characterizations. It was found that the boehmite nanofibers became shorter and coarser with the increase of temperature, and resulted in a gradual decrease of their specific surface areas. Moreover, the thermal stability of the boehmite nanofibers was studied by in situ HT X-ray diffraction and thermogravimetry–differential scanning calorimetry. All materials showed the phase transition from γ-Al2O3 to other forms. Yet the transition temperature was increased with the increase of hydrothermal temperature. The boehmite nanofibers with the largest diameter showed the best thermal stability.  相似文献   

5.
Dispersion polymerizations of methyl methacrylate utilizing poly(1,1,-dihydroperfluorooctyl acrylate) as a steric stabilizer in supercritical carbon dioxide (CO2) were carried out in the presence of helium. Particle size and particle size distribution were found to be dependent on the amount of inert helium present. Particle sizes ranging from 1.64 to 2.66 μm were obtained with various amounts of helium. Solvatochromic investigations using 9-(α-perfluoroheptyl-β,β-dicyanovinyl)julolidine indicated that the solvent strength of CO2 decreases with increasing helium concentration. This effect was confirmed by calculations of Hildebrand solubility parameters. Dispersion polymerization results indicate that PMMA particle size can be attenuated by the amount of helium present in supercritical CO2. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35 : 2009–2013, 1997  相似文献   

6.
选取气流床气化炉所使用不同煤阶的八种煤焦,通过多级筛分制得单分散煤粉样本,利用热重分析仪考察了气化温度、煤焦粒径对不同煤阶煤焦CO_2气化反应的影响。对比了不同碳转化率阶段下的反应差异,并讨论了高碳转化率阶段的情况。研究表明,随着煤阶的升高,煤焦碳微晶结构更为有序,其气化活性也随之降低。煤焦粒径对气化反应的影响与煤阶有关。对于无烟煤,平均粒径300μm的无烟煤煤焦转化率达到95%所需时间可达40μm煤焦的7倍;对于褐煤与烟煤,由于其孔隙结构较为发达,粒径变化对煤焦气化活性的影响并不明显。综合煤阶、气化温度、煤焦粒径对气化反应活性的影响发现,相较低阶煤,提高气化温度、减小煤焦粒径能够更有效地提升高阶煤气化反应活性。  相似文献   

7.
Variations in (13)C natural abundance and distribution of total C among five size and density fractions of soil organic matter, water soluble organic C (WSOC) and microbial biomass C (MBC) were investigated in the upper layer (0-20 cm) of a continuous grassland soil (CG, C(3) vegetation), a C(3)-humus soil converted to continuous maize cultivation (CM, C(4) vegetation) and a C(3)-humus soil converted to a rotation of maize cultivation and grassland (R). The amounts of WSOC and MBC were both significantly larger in the CG than in the CM and the R. In the three soils, WSOC was depleted while MBC was enriched in (13)C as compared with whole soil C. The relative contributions to the total C content of C stored in the macro-organic matter and in the size fraction 50-150 microm decreased with decreasing total C contents in the order CG > R > CM, while the relative contribution of C associated with the clay- and silt-sized fraction <50 microm increased. This reflects a greater stability and physical protection against microbial degradation associated with soil disruption (tillage) of the clay- and silt-associated organic C, in relation to the organic C in larger size fractions. The size and density fractions from the CG soil showed significant differences in (13)C enrichment, indicating different degrees of microbial degradation and stability of soil organic C associated with physically different soil organic matter (SOM) fractions. Delta(13)C analysis of the size and density fractions from CM and R soils reflected a decreasing turnover rate of soil organic C with increasing density among the macro-organic matter fractions and with decreasing particle size.  相似文献   

8.
The main objective of the present study is to study the behaviour of sewage sludge and biochar from sewage sludge pyrolysis after addition to soil in a context of a temperate agricultural soil. For this, an incubation experiment was designed during 200 days. Carbon mineralization of soil amended with sewage sludge and biochar at two different rates (4 and 8 wt%) was evaluated. Differential thermal analysis, thermogravimetry and the first derivate of the TG were performed in oxidizing conditions on soil samples before and after incubation. Biochar obtained from sewage sludge pyrolysis at 500 °C was more stable in soil than original sewage sludge. After incubation experiment, the reduction of soil organic matter content was significantly lower in soil amended with biochar than in soil amended with sewage sludge. The thermostability index WL3/WL2 decreases after incubation in soil amended with biochar, however it increases in case of soil treated with sewage sludge.  相似文献   

9.
Summary For the first time gas chromatographic characteristics of fused-silica capillary micro-packed columns consisting of two segments (i.e., serial columns) and packed with two different particle size fractions of the same sorbent have been investigated. The height equivalent to a theoretical plate (HETP) and the specific separation number vs. carrier gas velocity dependence has been studied. The expediency of empolying serial columns in which the segment containing the finer sorbent fraction is located near the column outlet has been theoretically and practically expalined. Serial columns with such an arrangement of the two segments show a better performance from the view point of efficiency and mass transfer coefficient.  相似文献   

10.
A general strategy in terms of large-scale and shape-controlled synthesis was used to design highly ordered mesoporous carbon spheres with controlled size from 50 to 500 microm by an evaporation induced organic-organic self-assembly inside ethanol-in-oil emulsions.  相似文献   

11.
The ability of biochar to enhance the physical and hydrological properties of light textured soils is highly dependent on the characteristics of biochar including its particle size. To investigate the effect of biochar particle size on water characteristics and soil structure of a sandy loam soil, date palm biochar prepared at a pyrolysis temperature of 450–500 °C was fractioned by dry sieving into four sizes: 2–1, 1–0.5, 0.5–0.1, and <0.1 mm, and mixed in soil pots with a sandy loam soil at an application rate of 4%. The soil pots were incubated in a greenhouse for 120 days, and water content was kept at field capacity throughout the experiment. Water retention, hydraulic conductivity, and soil structure parameters were measured. Results showed that the largest increase in both water content at field capacity and available water content was observed with the smallest biochar particle size due to increased microporosity as a result to the larger internal surfaces and the porous structure of the biochar particles. Condense particle packing and increased tortuosity due to increased microporosity resulted in a reduction in saturated hydraulic conductivity and bulk density of the soil and biochar mixtures. Soil structure was improved in the soil and biochar mixtures at all biochar particle sizes, nevertheless, no significant increase in soil structures was observed among biochar particle sizes < 1 mm. The application of biochar with particle sizes < 1 mm can enhance the physical and hydrological properties of light textured soils and increase water conservation in the soil, which will help to reduce the amount of water required for irrigation. However, assessment under field conditions is required to assess the long-term effect of biochar on water characteristics and soil structure.  相似文献   

12.
Adsorbed atomic C species can be formed in the course of surface reactions and commonly decorate metal catalysts. We studied computationally C adsorption on Pd nanoclusters using an all-electron scalar relativistic density functional method. The metal particles under investigation, Pd(55), Pd(79), Pd(85), Pd(116), Pd(140), and Pd(146), were chosen as fragments of bulk Pd in the form of three-dimensional octahedral or cuboctahedral crystallites, exposing (111) and (100) facets as well as edge sites. These cluster models are shown to yield size-converged adsorption energies. We examined which surface sites of these clusters are preferentially occupied by adsorbed C. According to calculations, surface C atoms form strongly adsorbed carbide species (with adsorption energies of more than 600 kJ mol(-1)) bearing a significant negative charge. Surface sites allowing high, fourfold coordination of carbon are overall favored. To avoid effects of adsorbate-adsorbate interaction in the cluster models for carbon species in the vicinity of cluster edges, we reduced the local symmetry of selected adsorption complexes on the nanoclusters by lowering the global symmetry of the nanocluster models from point group O(h) to D(4h). On (111) facets, threefold hollow sites in the center are energetically preferred; adsorbed C is calculated to be slightly less stable when displaced to the facet borders.  相似文献   

13.
14.
Colloidal dispersions of MoS2 in DMF were obtained, and a procedure for the preparation of the fraction of particles with the size distribution 1.5 times narrower than that in the original dispersion was developed. It was shown that for the gradual centrifugation of dispersions with an increase in the acceleration from 126g to 2016g the average thickness of nanosheets decreased from 35 to 8 nm and the average lateral sizes decreased from 250 nm to a constant value of 160 nm. A linear dependence of the absorbance of the dispersions on the concentration of MoS2 was established.  相似文献   

15.
This study sets out a comprehensive characterization of bulk Pd and Pd (ca. 8% w/w) supported on activated carbon (AC), graphite and graphitic nanofibers (GNF). Catalyst activation has been examined by temperature programmed reduction (TPR) analysis and the activated catalysts analyzed in terms of BET area, TEM, H2 chemisorption/TPD, and XRD measurements. While H2 chemisorption and TEM delivered the same sequence of increasing (surface area weighted) average Pd particle sizes, a significant difference (by up to a factor of 3) in the values obtained from both techniques has been recorded and is attributed to an unwarranted (but widely adopted) assumption of an exclusive H2/Pd adsorption stoichiometry=1/2. It is demonstrated that TEM analysis provides a valid mean particle size once it is established that the associated standard deviation is small and insensitive to additional particle counting. XRD line broadening yielded an essentially equivalent Pd size (20-25 nm) for each supported catalyst. The nature of the hydrogen associated with the supported catalysts has been probed and is shown to comprise of chemisorbed (on Pd), spillover (on the carbon support), and hydride (associated with Pd) species. Physical mixtures of bulk Pd + support (AC, graphite, and GNF) were also considered in order to assess hydrogen spillover by H2 TPD analysis. Generation of spillover hydrogen at room temperature is established where temperatures in excess of 740 K are required for effective desorption from the supported Pd catalysts, i.e., 280 K higher than that required for the desorption of chemisorbed hydrogen. Pd hydride formation (at room temperature) is shown to be reversible with decomposition occurring at ca. 380 K. Taking the hydrodechlorination of chlorobenzene as a test reaction, the capability of Pd hydride to promote a hydrogen scission of C-Cl in the absence of an external supply of H2 is demonstrated with a consequent consumption of the hydride. This catalytic response was entirely recoverable once the Pd hydride was replenished during a subsequent reactivation step.  相似文献   

16.

Magnetic, granulometric and geochemical analyses were conducted on an intertidal sediment core from the Yangtze Estuary to evaluate the possibility of normalizing samples for particle size effects in a heavy metal pollution study by means of magnetic proxies. It has been found that the magnetic parameterϰARM, indicating fine grained ferrimagnetic minerals, correlates well with the clay content and organic matter concentration of the sediments.ϰARM also shows significant relationship with heavy metals. ThereforeϰARM is proposed as a proxy for clay content in the sediments, and can be used to compensate for the particle size effect in sedimentary heavy metal records, where magnetic minerals are not subject to significant post-depositional alteration.

  相似文献   

17.
Magnetic, granulometric and geochemical analyses were conducted on an intertidal sediment core from the Yangtze Estuary to evaluate the possibility of normalizing samples for particle size effects in a heavy metal pollution study by means of magnetic proxies. It has been found that the magnetic parameter XARM, indicating fine grained ferrimagnetic minerals, correlates well with the clay content and organic matter concentration of the sediments. XARM also shows significant relationship with heavy metals. Therefore XARM is proposed as a proxy for clay content in the sediments, and can be used to compensate for the particle size effect in sedimentary heavy metal records, where magnetic minerals are not subject to significant post-depositional alteration.  相似文献   

18.
The aim of the present study is to evaluate the influence of resin particle sizes on the rate of ions release from a mixture of ion-exchange resins (named NMTD) which supplies calcium, fluoride, and phosphate ions as the main mineral content, and to elucidate the different phenomena taking place through the related ion-exchange process. The final goal of the study, related to dental application (enamel restoration), is to limit the particle size range, since the rate of ion release is a key parameter in the successful achievement of such objective. Weak-type ion-exchange resins, loaded with the appropriate ions, were ground and sieved into granulometric fractions of bead diameters of 0.1–0.075, 0.075–0.063, and 0.063–0.05 mm. Particle size was controlled by a laser diffraction particle distribution analyzer. The experiments on the kinetics of ions release were carried out under batch conditions in artificial saliva desorption solution thermostatized at 37 °C. The release of Ca2+ and F was determined by corresponding ion-selective electrodes automatically controlled, whereas H2PO4 was measured spectrophotometrically by the inductively coupled plasma–optical emission technique (ICP-OES). The results of this study show that the process of ion-exchange for the different particle size fractions of resins is critical for the study of the kinetics release of the ions immobilized in the corresponding mixed bed polymeric matrices. In fact, despite the apparent narrow range of particle sizes of the mixed bed systems studied, appreciable differences in the rate of ions release are obtained. Since the ion release rate is depending on the contact surface, an increase of factor of 2 in particle size represents an increase of an order of magnitude of the resin contact surface due to the resin porosity. In this concern, it has been observed that the rate of ions release increases when particle size decreases. The interactions occurring during the ion release from the mixed bed resins (containing calcium-, fluoride-, and phosphate-loaded resins) can be interpreted by the following phenomena: H2PO4, which hardly modifies its rate of release in the presence of Ca2+ and F in the mixture, promotes a considerable increase in the rate of Ca2+ release due to the formation of a calcium dihydrogen phosphate soluble complex. F also produces an acceleration in the rate of Ca2+ release due to the formation of solid CaF2 on the surface of cationic resin particles, which in contrast leads to a decrease in the rate of F release.  相似文献   

19.
We have studied the release curve for microcapsules with size distribution. On the basis of an analogy to the relaxation phenomena with multiple characteristic times, we propose a stretched exponential release curve for the system with size distribution and relate the release curve to the size distribution function of the microcapsule. This method was successfully applied to the transfer of azo-pigments from inner medium of dioctyl phthalate to dispersing medium of methanol through poly(ureaurethane) microcapsule membrane.  相似文献   

20.
High-pressure homogenization was used to disperse starch particles in water and reduce the size from micro- to nanometer. The resultant starch colloids were characterized by particle morphology, mean size, size distribution, and zeta potential. Starch slurries were transformed from a mixture containing sediment, dispersion, and sol, to gel as a result of reduction of the particle size from 3–6 μm to 10–20 nm under a pressure of 207 MPa. Furthermore, this process led to the transition of fluid properties without affecting the crystal structure and thermal stability of starch granules. Viscosity of the colloids increased with an increased number of homogenization passes, accompanied by a decreased particle size, narrower particle size distribution (PSD), and an increased absolute zeta potential, indicating the formation of a suspension or stable gel composed of nanoparticles. Lognormal and two other mathematical functions were established to describe the PSDs and their relationship to the homogenization passes. Hence, an environmentally friendly means of producing starch-based nanoparticles or nanogels with high yields, and predictable size and viscosity properties was presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号