首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Olive mill pomace is the major waste product in the olive oil industry and composting these by-products for the purpose of recycling nutrients and organic matter is a sound environmental strategy. Yet little is known about the quantity and timing of nitrogen (N) release from composted olive mill pomace. This paper assesses both gross (using the (15)N dilution technique) and net (aerobic incubation) nitrogen (N) mineralisation and N(2)O emissions of soil amended with seven commercially available composts of olive mill pomace (COMP). All are currently produced in Andalusia and differ in the proportions of raw materials co-composted with the pomace. The absence of significant differences in net N or gross mineralisation and nitrification in COMP-amended soil compared with a control, except for COMP combined with poultry manure, highlighted the recalcitrant nature of the COMP-N. Applications of COMP are hence unlikely to supply available N in available forms, at least in the short-term. Furthermore, N(2)O emissions from COMP-amended soil were negligible and, therefore, applications in the field should not result in increased N loss through denitrification.  相似文献   

2.
Intercropping with legumes is known to increase the plant-available nitrogen (N) in soil, but can also increase leaching of NO3- to the groundwater. To minimise NO3- leaching risks, knowledge of the N-release processes is essential, including an estimate of the contribution of legumes to total NO3- concentrations in soil. Our objectives were to answer the questions: (1) whether the presence of legume roots increases N mineralisation, and (2) whether the proportion of legume-derived N in NO3- could be calculated with the help of natural abundance 15N in NO3-. We sampled soil monoliths of a Medicago x varia Martyn monoculture in August 2004 and set up three treatments: 'disturbance' (sieved to <2 mm), 'disturbance-roots' (sieved to <2 mm and visible roots removed), and 'control' (left untreated). During an incubation period of 70 days, an N-free nutrient solution was leached through the samples weekly. In the leachates we measured total N, total organic carbon, NO3-, and NH4+ concentrations. Six of the 13 sampling dates were chosen for N isotope analysis in NO3-. Nitrate was separated as AgNO3. During the incubation, 3 to 6% of the initial total mass of total N (192 to 274 mg N) in soil was mineralised. Nitrogen mineralisation followed zero-order kinetics independent of treatments. Mineralisation rates decreased in the order control (day 70: 3.7 microg NO3-N (mg Ninitial)-1)>disturbance-roots (2.6 microg NO3-N (mg Ninitial)-1)>disturbance (1.9 microg NO3-N (mg Ninitial)-1), indicating that mineralisation of legume roots did not play a major role in N mineralisation. The delta15N values jumped from ca. 3 per thousand to ca. 8 per thousand after 2 weeks of incubation, which we attributed to the contribution of two N pools. An exponential two-pool model could not be fitted to the data. Legume-derived soil organic matter, SOM (pool 1), was mineralised at the same rate as SOM accumulated before establishment of the legumes (pool 2). Fresh legume roots did not contribute significantly to N mineralisation.  相似文献   

3.
N2 is one of the major gaseous nitrogen compounds released by soils due to N-transformation processes. Since it is also the major constituent of the earth's atmosphere (78.08% vol.), the determination of soil N2 release is still one of the main methodological challenges with respect to a complete evaluation of the gaseous N-loss of soils. Commonly used approaches are based either on a C2H2 inhibition technique, an artificial atmosphere or a 15N-tracer technique, and are designed either as closed systems (non-steady state) or gas flow systems (steady state). The intention of this work has been to upgrade the current gas flow technique using an artificial atmosphere for a 15N-aided determination of the soil N2 release simultaneously with N2O. A 15N-aided artificial atmosphere gas flow approach has been developed, which allows a simultaneous online determination of N2 as well as N2O fluxes from an open soil system (steady state). Fluxes of both gases can be determined continuously over long incubation periods and with high sampling frequency. The N2 selective molecular sieve K?strolith SX6 was tested successfully for the first time for dinitrogen collection. The presented paper mainly focuses on N2 flux determination. For validation purposes soil aggregates of a Haplic Phaeozem were incubated under aerobic (21 and 6 vol.% O2) and anaerobic conditions. Significant amounts of N2 were released only during anaerobic incubation (0.4 and 640.2 pmol N2 h(-1) g(-1) dry soil). However, some N2 formation also occurred during aerobic incubation. It was also found that, during ongoing denitrification, introduced [NO3]- will be more strongly delivered to microorganisms than the original soil [NO3]-.  相似文献   

4.
Nitrifiers and denitrifiers are the main producers of the greenhouse gas nitrous oxide (N(2)O). Knowledge of the respective contributions of each of these microbial groups to N(2)O production is a prerequisite for the development of effective mitigation strategies for N(2)O. Often, the differentiation is made by the use of inhibitors. Measurements of the natural abundance of the stable isotopes of N and O in N(2)O have been suggested as an alternative for the often unreliable inhibition studies. Here, we tested the natural abundance incubation method developed by Tilsner et al.1 with soils from four European grasslands differing in long-term management practices. Emission rates of N(2)O and stable isotope natural abundance of N(2)O and mineral N were measured in four different soil incubations: a control with 60% water-filled pore space (WFPS), a treatment with 60% WFPS and added ammonium (NH(4) (+)) to support nitrifiers, a control with 80% WFPS and a treatment with 80% WFPS and added nitrate (NO(3) (-)) to support denitrifiers. Decreases in NH(4) (+) concentrations, linked with relative (15)N-enrichment of residual NH(4) (+) and production of (15)N-depleted NO(3) (-), showed that nitrification was the main process for mineral N conversions. The N(2)O production, however, was generally dominated by reduction processes, as indicated by the up to 20 times larger N(2)O production under conditions favouring denitrification than under conditions favouring nitrification. Interestingly, the N(2)O concentration in the incubation atmospheres often levelled off or even decreased, accompanied by increases in delta(15)N and delta(18)O values of N(2)O. This points to uptake and further reduction of N(2)O to N(2), even under conditions with small concentrations of N(2)O in the atmosphere. The measurements of the natural abundances of (15)N and (18)O proved to be a valuable integral part of the natural abundance incubation method. Without these measurements, nitrification would not have been identified as essential for mineral N conversions and N(2)O consumption could not have been detected.  相似文献   

5.
Measurements of some of the main internal N-cycling processes in soil were obtained by labelling the inorganic N pool with the stable isotope of nitrogen ((15)N). The (15)N mean pool dilution technique, combined with other field measurements, enabled gross and net N-mineralization rates to be resolved in grassland soils, which had previously either received fertilizer N (F), or had remained unfertilized (U) for many years. The two soils were subdivided into plots that received N at different time intervals (over 3 weeks), prior to (15)N measurements being made. By this novel approach, possible 'priming' effects over time were investigated to try to overcome some of the temporal problems of isotopic labelling of soil N (native plus fertilizer) and to identify possible changes in a range of primary N-transformation processes. The results suggested that an overall stimulation of microbially mediated processes occurred with all N treatments, but there were inconsistencies associated with the release of N, both in the timing and the degree to which different processes responded to the application of fertilizer N. The rates of these processes were, however, within the range of previously reported data and the (15)N measurements were not adversely affected by the differences in N pools created by the treatments. Thus, the mean pool dilution technique was shown to be applicable to agricultural soils, under conditions relevant to grass swards receiving fertilizer. For example, between the U and F treatments, the size of inorganic N pools increased by five-fold and gross rates of mineralization reached 3.5 and 4.8 microg N g(-1) (dry soil) d(-1), respectively, but did not vary greatly with the timing of N applications. A correlation (r(2) = 0.57) was found between soil respiration (which is relatively simple to measure) and net mineralization (which is more time consuming), suggesting that the former might be used as an indicator of the latter. Although this relationship was stronger in previously unfertilized soils, the similarities found with fertilized soils suggest that this approach could be used to obtain information of wider agronomic value and would, therefore, warrant further work under a range of soil conditions.  相似文献   

6.
The N2O and N2 fluxes emitted from a temperate UK grassland soil after fertiliser application (equivalent to 25 and 75 kg N ha(-1)) were simultaneously measured, using a new automated soil incubation system, which replaces soil atmosphere (N2 dominated) with a He+O2 mixture. Dual isotope and isotopomer ratios of the emitted N2O were also determined. Total N2O and N2 fluxes were significantly lower (P<0.001) in the control (0 kg N) than in the 25 and 75 kg N treatments. The total N2O flux was significantly higher (P<0.001) in the 75 kg N than in the 25 kg N treatment. The general patterns of N2O and N2 fluxes were similar for both fertiliser treatments. The total gaseous N loss in the control treatment was nearly all N2, whereas in the fertiliser treatment more N2O than N2 was emitted from the soil. The ratio N2O/N2 fluxes as measured during the experiment suggested three phases in N2O production, in phase 1 nitrification>denitrification, in phase 2 denitrification>nitrification, and in phase 3 denitrification (and total denitrification)>nitrification. Dual delta15N and delta18O isotope and isotopomer (delta15Nalpha and delta15Nbeta) value ratios of emitted N2O also pointed towards an increasing dominance of the production of N2O by denitrification and total denitrification. The site preference value from the soil-emitted N2O was lower than the troposphere value. This confirmed that the enhanced troposphere N2O site preference could result from back injection of N2O from the stratosphere. The measurements of N2O/N2 flux ratio and the isotopic content of emitted N2O pointed, independently, to similar temporal trends in N2O production processes after fertiliser application to grassland soil. This confirmed that both measurements are suitable diagnostic tools to study the N2O production process in soils.  相似文献   

7.
Relationships between recent migration and hair delta(18)O values were examined for 40 people living in a rural community in SW England. The isotopic contents of 35 'local' hair samples were compared with those of 5 recently arrived individuals (from Australia, Canada, Chile, Germany and the USA). The hair delta(18)O values of these 'visitors' were +7.9 (Omaha, USA), +11.2 (Jena, Germany), +12.1 (Osorno, Chile), +12.6 (Montreal, Canada) and +14.3 per thousand (Adelaide, Australia). The hair value for the USA visitor (+7.9 per thousand) fell outside the range for the 33 local adult residents, +10.5 to +14.3 per thousand (+12.7 +/- 0.8 per thousand). Hair delta(18)O values did not identify the individuals from Adelaide, Montreal and Osorno as 'visitors', but hair delta(13)C or delta(34)S data did. Combining the hair delta(18)O, delta(13)C and delta(34)S values using principal components analysis (two components explained 89% of the overall variation among the 40 subjects) helped to more clearly distinguish European from non-European individuals, indicating the existence of global overall isotope (geo-origin) relationships.  相似文献   

8.
The attribution of nitrous oxide (N2O) emission to organic and inorganic N fertilizers requires understanding of how these inputs affect the two biological processes, i.e. denitrification and nitrification. Contradictory findings have been reported when the effects of organic and inorganic fertilizers on nitrous oxide emission were compared. Here we aimed to contribute to the understanding of such variation using 15N‐labelling techniques. We determined the processes producing N2O, and tested the effects of soil moisture, N rates, and the availability of organic matter. In a pot experiment, we compared soil treated with biogas waste (BGW) and mineral ammonium sulphate (Min‐N) applied at four rates under two soil moisture regimes. We also tested biogas waste, conventional cattle slurry and mineral N fertilizer in a grassland field experiment. During the first 37 days after application we observed N2O emissions of 5.6 kg N2O‐N ha?1 from soils supplied with biogas waste at a rate of 360 kg N ha?1. Fluxes were ca. 5‐fold higher at 85% than at 65% water holding capacity (WHC). The effects of fertilizer types and N rates on N2O emission were significant only when the soil moisture was high. Organic fertilizer treated soils showed much higher N2O emissions than those receiving mineral fertilizer in both, pot and field experiment. Over all the treatments the percentage of the applied N emitted as N2O was 2.56% in BGW but only 0.68% in Min‐N. In the pot experiment isotope labelling indicated that 65–95% of the N2O was derived from denitrification for all fertilizer types. However, the ratio of denitrification/nitrification derived N2O was lower at 65% than at 85% WHC. We speculate that the application of organic matter in conjunction with ammonium nitrogen first leads to a decrease in denitrification‐derived N2O emission compared with soil receiving mineral fertilizer. However, at later stages when denitrification becomes C‐limited, higher N2O emissions are induced when the soil moisture is high. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
Aerobic and anaerobic incubation experiments on a wetland soil samples were used to assess the respective roles of organic matter (OM) release, Fe-oxyhydroxides reduction and redox/speciation changes on trace metal mobility during soil reduction. Significant amounts of Cu, Cr, Co, Ni, Pb, U, Th and Rare Earth Elements (REE) were released during anaerobic incubation, and were accompanied by strong Fe(II) and dissolved organic matter (DOM) release. Aerobic incubation at pH 7 also resulted in significant trace metal and DOM release, suggesting that Fe-oxyhydroxide reduction is not the sole mechanism controlling trace metal mobility during soil reduction. Using these results and redox/speciation modeling, four types of trace metal behavior were identified: (i) metals bound to organic matter (OM) and released by DOM release (REE); (ii) metals bound to both OM and Fe-oxyhydroxides, and released by the combined effect of DOM release and Fe(III) reduction (Pb and Ni); (iii) metals bound solely to soil Fe-oxyhydroxides and released by its reductive dissolution (Co); and (iv) metals for which release mechanisms are unclear because their behavior upon reduction is affected by changes in redox state and/or solution speciation (Cu, Cr, U and Th). Even though the process of soil Fe-oxyhydroxide reduction is important in controlling metal mobility in wetland soils, the present study showed that the dominant mechanism for this process is OM release. Thus, OM should be systematically monitored in experimental studies dedicated to understand trace metal mobility in wetland soils. Due to the fact that the process of OM release is mainly controlled by pH variations, the pH is a more crucial parameter than Eh for metal mobility in wetland soils.  相似文献   

10.
Olness A  Basta NT  Rinke J 《Talanta》2002,57(2):383-391
Relative soil aeration affects the surfaces upon which pesticides adsorb and non-ionic resins offer a means of observing and evaluating this factor. A non-ionic resin extractor, developed for pesticide extraction under reducing conditions, was used to adsorb a fraction of the reversibly adsorbed (active portion) herbicides. The extractor consists of cleaned XAD-2 resin encased in a dialysis membrane composed of regenerated cellulose. Anaerobiosis was achieved by incubating soil suspensions with glucose under a 95% N(2)-5% H(2) environment until the redox potential reached -150 mV. Nine soils with a range of physical and chemical characteristics were examined for atrazine, metribuzin, and alachlor content. Amounts of atrazine, metribuzin, and alachlor extracted from soil ranged to 100, 140, and 75 ng g(-1), respectively. Resin extractions (RE) conducted under aerobic conditions recovered about 25-50% of the pesticide extractable with conventional solid phase solvent extraction at 60 degrees C (SPE(60)). Under anaerobic conditions, equal amounts of atrazine were extracted with RE and SPE(60). Slightly less metribuzin was recovered under anaerobic extraction with the exception of those soils lacking detectable amounts by SPE(60). Larger amounts of alachlor were extracted with resins under anaerobic conditions than under aerobic conditions but the amounts were not correlated with those determined by SPE(60). Large amounts of soil organic matter were solublized under anaerobiosis and smaller molecular weight material was extracted with the herbicides. The nature and amounts of co-extracted organic matter varied among soils. RE directly from soil suspensions enabled simultaneous determination of all three herbicides.  相似文献   

11.
Abstract

The anaerobic degradation of PCB in loamy and clayey soils containing indigeneous microflora was studied. The anaerobic conditions were created by an argon atmosphere in the flasks containing soil flooded by a liquid medium with glucose. GC-ECD analysis of soil extracts after 40 day incubation showed, in addition to the concentration changes of the less chlorinated PCB congeners, a significant decrease in the concentration of highly chlorinated congeners in both soils. The results indicate that in both soil types reductive dehalogenation of PCB congeners was encountered.  相似文献   

12.
Abstract

The effect of liquid animal manure on heavy metal solubilization in soil has been studied in the laboratory; three different types of experiments were carried out:

1) aerobic and anaerobic incubation of soil/manure mixtures

2) desorption of heavy metals from soil, as affected by manure liquid fraction

3) gel permeation chromatography of soil/manure aqueous extracts to identify components responsible for heavy metal solubilization.

Alf three different approaches showed that complexation involving high molecular weight dissolved organic matter from the soil/manure matrix is (together with pH) the most important driving force for heavy metal solubilization. As a consequence, chemical and microbial processes (e.g. nitrification) that influence dissolved organic matter concentrations in the soil solution, determine the degree of heavy metal solubilization in manured soil.  相似文献   

13.
Volcanic (allophanic) soils are interesting in terms of the control of the greenhouse effect and the knowledge of the porous features is of importance to understand the mechanism of C and N sequestration. These soils contain a peculiar clay: allophane aggregates quite close to the synthetic mineral gels aggregates. These volcanic materials behave as gels during drying with a large irreversible shrinkage that can modify the soil physical properties. Consequently, as for silica gels, we use the CO2 supercritical drying procedure (SD) to control the drying step and to preserve the structural and textural properties of the soils. The experimental results show that the N and C content in the soils is clearly dependent on the allophane content. We also show that the textural properties, such as specific surface area, are higher for the supercritically dried samples, compared to the classically dried samples, and SAXS results confirm the preserving effect of the SD. With these data, we propose possible effects of the specific surface area on the C and N content of the allophanic soils.  相似文献   

14.
The objective of this study is to study the influence of de-inking paper sludge (DPS) and sewage sludge (SL) mixtures addition at different rates (2, 4 and 8%) in two soils. Incubation experiments were performed during 60 days and the influence of treatments in physical soil properties was determined by soil porosity and stability of aggregates. Differential thermal analysis (DTA) of amended soils after incubation was performed. Experimental results show that amendment increased biological soil activity, soil porosity and stability of aggregates. DTA analysis shows that the first exothermic peak generally increases with the dosage of DPS:SL due to the addition of immature organic matter. Moreover, the second peak enlarges probably due to the humification process during incubation.  相似文献   

15.
The degradation of imazapyr in four soils was investigated under laboratory aerobic and anaerobic conditions. Under aerobic conditions, imazapyr degraded faster in yellow–red soil than in other soils, and its persistence decreased depending on soil pH in the order coastal soil (pH 8.8)?>?silt-loamy paddy soil (pH 7.9)?>?fluvio-marine yellow loamy soil (pH 7.1)?>?Yellow–red soil (pH 5.3). However, soil pH did not affect imazapyr degradation under anaerobic conditions. The half-lives of imazapyr in soils under aerobic conditions were in the range of 26–44 days estimated by the first-order kinetics model, while 3–10 days calculated by two-stage model under anaerobic conditions. The preceding results demonstrated that anaerobic conditions contributed to imazapyr disappearance in soils. Based on the spectral data of APCI-MS, 1H NMR and IR, structures of the following metabolites: 2,3-pyridinedicarboxamide, 2,3-pyridinedicarboxylic anhydride and 2,3-pyridinedicarboximide for aerobic treatments; 2,3-pyridinedicarboxylic anhydride and 2-(4-hydroxy-5-oxo-2-imdazolin-2-yl) nicotinic acid for anaerobic treatments, were identified. Degradation mechanism under the different conditions was also discussed.  相似文献   

16.
Acid rain is supposed to influence soil structures, because soils have pH-dependent charges. The adverse effects of acid rain on soils must be assessed. Although repulsive potential energy among soil clay particles generates swelling and dispersion, thereby changing the soil’s hydraulic conductivity, the relationship between hydraulic conductivity and repulsive potential energy has not been evaluated. Moreover, research into repulsive potential energy in multivalent counterionic systems has been rare. In this paper, repulsive potential energies for a volcanic ash soil (allophanic Andisol), which is characterized by a number of pH-dependent charges, were evaluated in a multivalent counterionic system. Changes in saturated hydraulic conductivity (K) of volcanic ash soil during dilute acid leaching and their relationship with the repulsive potential energies were examined. When nitric acid at pH 3 or 4 was leached, K decreased rapidly. On the other hand, the decrease in K attenuated as the proportion of sulfate in the dilute acid increased. Electrophoretic mobilities were measured and the zeta potentials were estimated. From the zeta potentials and the calculation of repulsive potential energies between the clay particles in the NO3–SO4 system, we concluded that the decrease in K for an acid solution with a high proportion of nitrate was due to swelling and dispersion of the soil induced by electrostatic repulsive potential energy. Because sulfate formed complexes on the clay surface, the repulsive potential energy decreased as the proportion of sulfate in the dilute acid increased. Then, the flocculation of the soil was maintained, thereby inhibiting the decrease in K.  相似文献   

17.
The isotopic signature of Dissolved Inorganic Carbon (DIC), δ(13)C(DIC), has been investigated in the surface waters of a small agricultural catchment on calcareous substratum, Montoussé, located at Auradé (south-west France). The Montoussé catchment is subjected to intense farming (wheat/sunflower rotation) and a moderated application of nitrogenous fertilizers. During the nitrification of the NH(4)(+), supplied by fertilization, nitrate and H(+) ions are produced in the soil. This anthropogenic acidity is combined with the natural acidity due to carbonic acid in weathering processes. From an isotopic point of view, with 'natural weathering', using carbonic acid, δ(13)C(DIC) is intermediate between the δ(13)C of soil CO(2) produced by organic matter oxidation and that of the carbonate rocks, while it has the same value as the carbonates when carbonic acid is substituted by another acid like nitric acid derived from nitrogen fertilizer. The δ(13)C(DIC) values range from -17.1‰ to -10.7‰ in Montoussé stream waters. We also measured the δ(13)C of calcareous molassic deposits (average -7.9‰) and of soil organic carbon (between -24.1‰ and -26‰) to identify the different sources of DIC and to estimate their contribution. The δ(13) C(DIC) value indicates that weathering largely follows the carbonic acid pathway at the springs (sources of the stream). At the outlet of the basin, H(+) ions, produced during the nitrification of N-fertilizer, also contribute to weathering, especially during flood events. This result is illustrated by the relationship between δ(13)C(DIC) and the molar ratio NO(3)(-)/(Ca(2+) + Mg(2+)). Consequently, when the contribution of nitrate increases, the δ(13)C(DIC) increases towards the calcareous end-member. This new isotopic result provides evidence for the direct influence of nitrogen fertilizer inputs on weathering, CO(2) consumption and base cation leaching and confirms previous results obtained using the chemistry of the major ions present in the field, and in soil column experiments.  相似文献   

18.
Recent recommendations for environmentally sound use of liquid animal manure often include injection of slurry into soil. Two of the most important undesired side effects, ammonia (NH(3)) volatilisation and odour emissions, are usually significantly reduced by slurry injection. On the other hand, because of the higher amount of nitrogen (N) remaining in soil, the risk of nitrate (NO(3)(-)) leaching and nitrous oxide (N(2)O) emissions is increased. Thus, the reduction of local effects caused by NH(3) deposition, e.g. N enrichment and soil acidification, may be at the cost of large-scale effects such as ozone depletion and global warming as a result of emitted N(2)O. In this context, nitrification inhibitors can contribute significantly to a reduction in NO(3)(-) leaching and N(2)O production. A field experiment was carried out at IGER, North Wyke, which aimed to evaluate the effect of the new nitrification inhibitor 3,4-dimethylpyrazole phosphate (DMPP/ENTEC). For this experiment, (15)N enriched dairy slurry was used and the isotopic label in soil N as well as in N(2)O were studied. After slurry injection into the grassland soil in August 2000, the major emissions of N(2)O occurred during the first ten days. As expected, high N(2)O emission rates and (15)N content of the emissions were concentrated on the slurry injection slots, showing a steep decrease towards the untreated centre-point between slurry injection slots. The nitrification inhibitor DMPP proved to be very efficient in reducing N(2)O emissions. At a rate of 2 kg DMPP ha(-1), the total amount of N(2)O emitted was reduced by 32%, when compared with slurry injection without DMPP. The isotopic label of the emitted N(2)O showed that during the 22-day experimental period, emissions from the slurry N pool were strongly reduced by DMPP from 0.93 kg N(2)O-N ha(-1) (-DMPP) to 0.50 kg N(2)O-N ha(-1) (+DMPP), while only a minor effect on emissions from the soil N pool was observed (0.69 to 0.60 kg N(2)O-N ha(-1); -DMPP, +DMPP, respectively).  相似文献   

19.
Phyllosilicates with net negative surface charge and Fe/Al oxides with net positive surface charge coexist in variable-charge soils, and the interaction between these oppositely charged particles affects the stability of mixed colloids, aggregation, and even the surface chemical properties of variable-charge soils. The interaction of the diffuse layers of electrical double layers between the negatively charged soil colloidal particles and the positively charged particles of goethite or gamma-Al(2)O(3) was investigated in this article through the comparison of zeta potentials between single-soil colloidal systems and binary systems containing soil colloids and Fe/Al oxides. The results showed that the presence of goethite and gamma-Al(2)O(3) increased the zeta potential of the binary system containing soil colloids and Fe/Al oxides, which clearly suggests the overlapping of the diffuse layers in soil colloids and Fe/Al oxides. The overlapping of the diffuse layers leads to a decrease in the effective negative charge density on soil colloid and thus causes a shift of pH-zeta potential curves toward the more positive-value side. The interaction of the electrical double layers is also related to the charge characteristics on the Fe/Al oxides: the higher the positive charge density on Fe/Al oxides, the stronger the interaction of the electrical double layers between the soil colloid particles and the Fe/Al oxides.  相似文献   

20.
Nitrous oxide (N(2)O) is a major greenhouse gas that is mainly produced but also reduced by microorganisms in soils. We determined factors for N and O isotope fractionation during the reduction of N(2)O to N(2) in soil in a flow-through incubation experiment. The absolute value of the fractionation factors decreased with increasing reaction rate constant. Reaction rates constants ranged from 1.7 10(-4) s(-1) to 4.5 10(-3) s(-1). The minimum, maximum and median of the observed fractionation factors were for N -36.0 per thousand, -1.0 per thousand and -9.3 per thousand and for O -74.0 per thousand, -6.9 per thousand and -26.3 per thousand, respectively. The ratio of O isotope fractionation to N isotope fractionation was 2.4 +/- 0.3 and it was independent from the reaction rate constants. This leads us to conclude that fractionation factors are variables while their ratio in this particular reaction might be a constant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号